cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341927 Bisection of the numerators of the convergents of cf(1,4,1,6,1,6,...,6,1).

This page as a plain text file.
%I A341927 #57 Mar 25 2021 05:11:57
%S A341927 1,6,47,370,2913,22934,180559,1421538,11191745,88112422,693707631,
%T A341927 5461548626,42998681377,338527902390,2665224537743,20983268399554,
%U A341927 165200922658689,1300624112869958,10239791980300975,80617711729537842,634701901856001761,4996997503118476246,39341278123091808207
%N A341927 Bisection of the numerators of the convergents of cf(1,4,1,6,1,6,...,6,1).
%C A341927 15*a(n)^2 - 11 is a square for all terms.
%C A341927 x = a(n) and y = a(n+1) satisfy x^2 + y^2 - 8*x*y = -11.
%C A341927 x = a(n) and y = a(n+2) satisfy x^2 + y^2 - 62*x*y = -704.
%H A341927 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-1).
%F A341927 a(0) = 1; a(1) = 6; a(n) = 8*a(n-1) - a(n-2).
%F A341927 G.f.: (1 - 2*x)/(1 - 8*x + x^2). - _Stefano Spezia_, Feb 26 2021
%F A341927 a(n) = A237262(2*n + 1).
%e A341927 a(3) = 8*6 - 1 = 47.
%t A341927 LinearRecurrence[{8, -1}, {1,6},15]
%o A341927 (PARI) my(p=Mod('x,'x^2-8*'x+1)); a(n) = subst(lift(p^n),'x,6); \\ _Kevin Ryde_, Mar 01 2021
%Y A341927 Bisection of A237262.
%Y A341927 Cf. A341929.
%K A341927 nonn,easy
%O A341927 0,2
%A A341927 _John O. Oladokun_, Feb 23 2021