This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341928 #16 Mar 20 2021 17:13:15 %S A341928 3,31,58,175,435,1162,3019,7927,20730,54295,142123,372106,974163, %T A341928 2550415,6677050,17480767,45765219,119814922,313679515,821223655, %U A341928 2149991418,5628750631,14736260443,38580030730,101003831715,264431464447,692290561594,1812440220367 %N A341928 a(n) = F(n+4) * F(n+2) + 7 * (-1)^n where F(n) = A000045(n) are the Fibonacci numbers. %C A341928 First differences of A341208. %C A341928 Second differences of A338225. %C A341928 Third differences of A226205 n > 2. %C A341928 Third differences between the areas of consecutive rectangles with side lengths F(n+3) and F(n). %C A341928 Twice the third differences between the areas of consecutive deltoids with cross lengths F(n+3) and F(n). %C A341928 Twice the third differences between the areas of consecutive triangles with the height and base length are F(n+3) and F(n). %D A341928 Burak Muslu, Sayılar ve Bağlantılar, Luna, 2021, p. 51 (in Turkish). %H A341928 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-1). %F A341928 a(n) = F(n+4) * F(n+2) + 7 * (-1)^n. %F A341928 G.f.: x*(3 + 25*x - 10*x^2)/(1 - 2*x - 2*x^2 + x^3). %e A341928 For n = 2, a(2) = F(2+4) * F(2+2) + 7 * (-1)^2 = 8 * 3 + 7 = 31. %t A341928 Table[Fibonacci[n + 4] * Fibonacci[n + 2] + 7 * (-1)^n, {n, 1, 28}] (* _Amiram Eldar_, Feb 23 2021 *) %o A341928 (PARI) a(n) = fibonacci(n+4)*fibonacci(n+2) + 7*(-1)^n; \\ _Michel Marcus_, Feb 23 2021 %Y A341928 Cf. A000045, A341208, A338225, A226205. %K A341928 nonn,easy %O A341928 1,1 %A A341928 _Burak Muslu_, Feb 23 2021