cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341929 Bisection of the numerators of the convergents of cf (1,1,6,1,6,1,...,6,1).

This page as a plain text file.
%I A341929 #50 Mar 25 2021 05:13:51
%S A341929 1,2,15,118,929,7314,57583,453350,3569217,28100386,221233871,
%T A341929 1741770582,13712930785,107961675698,849980474799,6691882122694,
%U A341929 52685076506753,414788729931330,3265624762943887,25710209373619766,202416050226014241,1593618192434494162,12546529489249939055,98778617721565018278
%N A341929 Bisection of the numerators of the convergents of cf (1,1,6,1,6,1,...,6,1).
%C A341929 15*a(n)^2 - 11 is a square for all terms.
%C A341929 x = a(n) and y = a(n+1) satisfy the equation x^2 + y^2 - 8*x*y = -11.
%C A341929 x = a(n) and y = a(n+2) satisfy x^2 + y^2 - 62*x*y = -704.
%H A341929 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-1).
%F A341929 a(n) = 8*a(n-1) - a(n-2) for n >= 2.
%F A341929 a(n) = A237262(2*n) for n >= 1.
%F A341929 G.f.: (1 - 6*x)/(1 - 8*x + x^2). - _Stefano Spezia_, Mar 01 2021
%e A341929 a(3) = 8*15 - 2 = 118.
%t A341929 LinearRecurrence [{8, -1}, {1,2}, 15]
%o A341929 (PARI) my(p=Mod('x,'x^2-8*'x+1)); a(n) = subst(lift(p^n),'x,2); \\ _Kevin Ryde_, Feb 27 2021
%Y A341929 After a(0), bisection of A237262.
%Y A341929 Cf. A341927.
%K A341929 nonn,easy
%O A341929 0,2
%A A341929 _John O. Oladokun_, Feb 23 2021