This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341932 #12 Jul 29 2023 11:19:36 %S A341932 -1,-1,0,0,1,0,-1,4,-1,-1,3,0,-1,0,-1,-1,-1,0,-1,0,-1,-1,3,0,1,12,-1, %T A341932 4,-1,0,-1,0,-1,-1,1,-1,-1,0,-1,-1,-1,0,1,0,-1,-1,43,0,31,-1,-1,4,15, %U A341932 12,-1,28,9,-1,1,0,13,0,-1,-1,-1,-1,-1,0,57,-1,1,0,-1 %N A341932 a(n) = largest k < n such that the decimal concatenation n||n-1||n-2||...||n-k is prime, or -1 if no such prime exists. %C A341932 a(82) = 81, are there any other n such that a(n) = n-1? %C A341932 Primes p such that a(p) > 0: 7, 53, 73, 79, 89, 103, ... %C A341932 n such that a(n) > A341702(n): 7, 10, 22, 46, 48, 53, 55, 73, ... %C A341932 Similar argument as in A341716 shows that if n > 3 and a(n) >= 0, then n-a(n) is odd, a(n) !== 2 (mod 3) and 2n-a(n) !== 0 (mod 3). %F A341932 a(n) = n-A341931(n) >= A341702(n). %e A341932 a(22) = 3 since 22212019 is prime. %o A341932 (Python) %o A341932 from sympy import isprime %o A341932 def A341932(n): %o A341932 k, m, r = n, n-1, 0 if isprime(n) else -1 %o A341932 while m > 0: %o A341932 k = int(str(k)+str(m)) %o A341932 if isprime(k): %o A341932 r = n-m %o A341932 m -= 1 %o A341932 return r %Y A341932 Cf. A052088, A052089, A341701, A341702, A341715, A341716, A341717, A341931. %K A341932 sign,base %O A341932 0,8 %A A341932 _Chai Wah Wu_, Feb 23 2021