This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341970 #11 Mar 11 2021 21:28:21 %S A341970 1,1,1,2,1,1,2,1,3,1,2,1,1,2,3,1,4,1,2,1,3,1,2,1,4,1,2,3,5,1,1,2,1,3, %T A341970 4,1,2,1,5,1,2,3,6,1,4,1,2,1,3,1,2,5,1,4,1,2,3,6,1,7,1,2,1,3,4,5,1,2, %U A341970 1,1,2,3,6,1,4,1,2,5,7,1,3,8,1,2,1,4,1,2,3,6,1,5 %N A341970 Irregular triangle read by rows of the indices of the entries of 1's in the corresponding rows in A237048. %C A341970 The number of entries in the n-th row of the table of this sequence is A001227(n), the number of odd divisors of n. %C A341970 Let number n = 2^s * q with s >= 0 and q odd, let row(n) = floor( (sqrt(8*n+1) - 1)/2 ), let D_n = { d : d odd divisor of n and d <= row(n) }, let E_n = { e : e = 2^(s+1) * d, d in D_n and e <= row(n) } and let F_n be the union of D_n and E_n with its elements listed in increasing order. Then the numbers in F_n are exactly the positions of 1's in row n of A237048 and the numbers in row n of this sequence. %F A341970 Let 1 <= n, 1 <= d <= A001227(n) and k the index of the d-th 1 in row n of A237048. %F A341970 a( A060831(n-1) + d ) = T(n, d) = k. %e A341970 a(8, 9) = { 1, 3 } is row 6 in this sequence with corresponding row 6 { 1, 0, 1 } in A237048. %e A341970 a(26...29) = { 1, 2, 3, 5 } is row 15 in this sequence with corresponding row 15 { 1, 1, 1, 0, 1 } in A237048. %e A341970 Table of the first 15 rows: %e A341970 row entries %e A341970 1 1 %e A341970 2 1 %e A341970 3 1 1 %e A341970 4 1 %e A341970 5 1 2 %e A341970 6 1 3 %e A341970 7 1 2 %e A341970 8 1 %e A341970 9 1 2 3 %e A341970 10 1 4 %e A341970 11 1 2 %e A341970 12 1 3 %e A341970 13 1 2 %e A341970 14 1 4 %e A341970 15 1 2 3 5 %t A341970 row[n_] := Floor[(Sqrt[8 n+1]-1)/2] %t A341970 oddD[n_] := Select[Divisors[n], OddQ[#]&&#<=row[n]&] %t A341970 twoExp[n_] := Module[{f=FactorInteger[n]}, If[First[First[f]]==2, Last[First[f]], 0]] %t A341970 dualD[n_] := Select[Map[2^(twoExp[n]+1)#&, oddD[n]], #<=row[n]&] %t A341970 a341970[n_] := Union[oddD[n], dualD[n]] %t A341970 Flatten[Map[a341970, Range[40]]] (* first 40 rows of table *) %Y A341970 Cf. A001227, A060831, A237048, A237593. %K A341970 nonn,tabf %O A341970 1,4 %A A341970 _Hartmut F. W. Hoft_, Feb 24 2021