cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341970 Irregular triangle read by rows of the indices of the entries of 1's in the corresponding rows in A237048.

This page as a plain text file.
%I A341970 #11 Mar 11 2021 21:28:21
%S A341970 1,1,1,2,1,1,2,1,3,1,2,1,1,2,3,1,4,1,2,1,3,1,2,1,4,1,2,3,5,1,1,2,1,3,
%T A341970 4,1,2,1,5,1,2,3,6,1,4,1,2,1,3,1,2,5,1,4,1,2,3,6,1,7,1,2,1,3,4,5,1,2,
%U A341970 1,1,2,3,6,1,4,1,2,5,7,1,3,8,1,2,1,4,1,2,3,6,1,5
%N A341970 Irregular triangle read by rows of the indices of the entries of 1's in the corresponding rows in A237048.
%C A341970 The number of entries in the n-th row of the table of this sequence is A001227(n), the number of odd divisors of n.
%C A341970 Let number  n = 2^s * q with s >= 0 and q odd, let row(n) = floor( (sqrt(8*n+1) - 1)/2 ), let D_n = { d : d odd divisor of n and d <= row(n) }, let E_n = { e : e = 2^(s+1) * d,  d in D_n and e <= row(n) } and let F_n be the union of D_n and E_n with its elements listed in increasing order. Then the numbers in F_n are exactly the positions of 1's in row n of A237048 and the numbers in row n of this sequence.
%F A341970 Let 1 <= n, 1 <= d <= A001227(n) and k the index of the d-th 1 in row n of A237048.
%F A341970 a( A060831(n-1) + d ) = T(n, d) = k.
%e A341970 a(8, 9) = { 1, 3 } is row 6 in this sequence with corresponding row 6  { 1,  0,  1 } in A237048.
%e A341970 a(26...29) = { 1, 2, 3, 5 } is row 15 in this sequence with corresponding row 15 { 1, 1, 1, 0, 1 } in A237048.
%e A341970 Table of the first 15 rows:
%e A341970 row    entries
%e A341970 1      1
%e A341970 2      1
%e A341970 3      1  1
%e A341970 4      1
%e A341970 5      1  2
%e A341970 6      1  3
%e A341970 7      1  2
%e A341970 8      1
%e A341970 9      1  2  3
%e A341970 10     1  4
%e A341970 11     1  2
%e A341970 12     1  3
%e A341970 13     1  2
%e A341970 14     1  4
%e A341970 15     1  2  3  5
%t A341970 row[n_] := Floor[(Sqrt[8 n+1]-1)/2]
%t A341970 oddD[n_] := Select[Divisors[n], OddQ[#]&&#<=row[n]&]
%t A341970 twoExp[n_] := Module[{f=FactorInteger[n]}, If[First[First[f]]==2, Last[First[f]], 0]]
%t A341970 dualD[n_] := Select[Map[2^(twoExp[n]+1)#&, oddD[n]], #<=row[n]&]
%t A341970 a341970[n_] := Union[oddD[n], dualD[n]]
%t A341970 Flatten[Map[a341970, Range[40]]] (* first 40 rows of table *)
%Y A341970 Cf. A001227, A060831, A237048, A237593.
%K A341970 nonn,tabf
%O A341970 1,4
%A A341970 _Hartmut F. W. Hoft_, Feb 24 2021