This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342011 #14 Mar 12 2021 23:11:50 %S A342011 1,2,1,3,1,2,4,1,5,6,1,2,3,7,8,9,1,10,11,4,2,12,13,14,1,15,16,17,3,18, %T A342011 19,20,21,5,22,1,23,2,24,25,6,26,27,28,29,30,31,32,33,34,1,35,36,4,37, %U A342011 38,39,7,40,41,42,43,44,45,46,8,47,2,48,49,50,3,51,52,53,54,1,55,56,57,58,59,60,61,62,9,63,64 %N A342011 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), for all i, j >= 1, with f(1) = 2 and f(n) = A004490(n)/A004490(n-1) when n > 1, where A004490(n) is the n-th colossally abundant number. %C A342011 This is also the restricted growth sequence transform of A073751, provided that quotient A004490(1+n)/A004490(n) is always prime, which is implied by a conjecture mentioned in Lagarias' paper. Note that the b-file of A073751 is computed based on the knowledge that the conjecture holds at least for the first 10^7 quotients. %H A342011 Antti Karttunen, <a href="/A342011/b342011.txt">Table of n, a(n) for n = 1..10000</a> (computed from the b-file of A073751 provided by T. D. Noe) %H A342011 J. C. Lagarias, <a href="https://arxiv.org/abs/math/0008177">An elementary problem equivalent to the Riemann hypothesis</a>, arXiv:math/0008177 [math.NT], 2000-2001; Am. Math. Monthly 109 (#6, 2002), 534-543. %F A342011 a(n) = A000720(A073751(n)), up to the first n where A004490(n)/A004490(n-1) is not a prime. %o A342011 (PARI) %o A342011 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; %o A342011 v073751 = readvec("b073751_to.txt"); \\ Prepared with gawk '{ print $2 }' < b073751.txt > b073751_to.txt %o A342011 v342011 = rgs_transform(v073751); %o A342011 A342011(n) = v342011[n]; %o A342011 for(n=1,#v342011,write("b342011.txt", n, " ", A342011(n))); %Y A342011 Cf. A000720, A004490, A073751, A342010, A342012, A342013. %K A342011 nonn %O A342011 1,2 %A A342011 _Antti Karttunen_, Mar 08 2021