This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342026 #16 Mar 14 2021 20:42:41 %S A342026 -1,-1,0,-1,-1,-1,0,2,0,-1,-1,-1,0,-1,-1,2,-1,-1,-1,-1,-1,-1,-1,-1,-1, %T A342026 -1,-1,-1,-1,-1,1,0,0,-1,-1,1,0,0,0,-1,-1,-1,-1,0,0,-1,-1,-1,-1,-1,-1, %U A342026 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,-1,-1,-1,-1,-1,0,-1,1,-1,-1,-1,-1,-1,-1,-1,4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1 %N A342026 Difference in the maximal prime exponents between the arithmetic derivative of A276086(n) and A276086(n) itself, which is the prime product form of primorial base expansion of n. %H A342026 Antti Karttunen, <a href="/A342026/b342026.txt">Table of n, a(n) for n = 1..65537</a> %H A342026 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A342026 a(n) = A328310(A276086(n)) = A328391(n) - A328114(n). %F A342026 a(n) = -1 iff A342005(n) = 1. %o A342026 (PARI) %o A342026 A051903(n) = if((1==n), 0, vecmax(factor(n)[, 2])); %o A342026 A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); }; %o A342026 A328391(n) = if(!n,n,A051903(A327860(n))); %o A342026 A328114(n) = { my(s=0, p=2); while(n, s = max(s, (n%p)); n = n\p; p = nextprime(1+p)); (s); }; %o A342026 A342026(n) = (A328391(n) - A328114(n)); %Y A342026 Cf. A003415, A276086, A342005, A327860, A328114, A328310, A328391, A342006 (positions of nonnegative terms). %Y A342026 Cf. also A342016, A342019. %K A342026 sign %O A342026 1,8 %A A342026 _Antti Karttunen_, Mar 13 2021