This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342027 #10 Feb 26 2021 11:15:10 %S A342027 2,3,6,16,24,42,23,50,47,133,138,67,161,106,30,675,455,338,697,137, %T A342027 488,692,189,934,1863,1552,518,450,2036,1815,2856,3635,6784,8781,2787, %U A342027 2790,99,11396,3903,2539,9722,1851,6399,7388,6592,24371,12408,14059,32846,21934,13490,72170,42106,15469,45948 %N A342027 a(n) is the least m such that A341284(m) = 2*n*prime(m+1) - prime(m). %C A342027 a(n) is the least m such that 2*n*prime(m+1)-prime(m) is prime while for all j < n, 2*j*prime(m+1)-prime(m) is not prime. %H A342027 Robert Israel, <a href="/A342027/b342027.txt">Table of n, a(n) for n = 1..175</a> %F A342027 A341284(a(n)) = 2*n*prime(a(n)+1)-prime(a(n)). %e A342027 For k=4, A341284(16) = 419 = 2*4*prime(17)-prime(16) and a(4) = 16. %p A342027 N:= 60: # for a(1) to a(N) %p A342027 V:= Vector(N): count:= 0: %p A342027 g:= proc(n) local k, pn, p1; %p A342027 pn:= ithprime(n); p1:= ithprime(n+1); %p A342027 for k from 2*p1-pn by 2*p1 to 2*N*p1-pn do %p A342027 if isprime(k) then return (k+pn)/(2*p1) fi %p A342027 od; %p A342027 N+1 %p A342027 end proc: %p A342027 for n from 2 while count < N do %p A342027 v:= g(n); %p A342027 if v <= N and V[v] = 0 then V[v]:= n; count:= count+1 fi %p A342027 od: %p A342027 convert(V,list); %Y A342027 Cf. A341284. %K A342027 nonn %O A342027 1,1 %A A342027 _J. M. Bergot_ and _Robert Israel_, Feb 25 2021