cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342031 Starts of runs of 5 consecutive numbers that have mutually distinct exponents in their prime factorization (A130091).

Original entry on oeis.org

1, 16, 241, 2644, 4372, 1431124, 12502348, 112753348, 750031648, 2844282247, 5882272324, 6741230497, 8004453748, 87346072024, 130489991521, 218551872247, 245127093748, 460925878624, 804065433748, 1176638279524, 2210511903748, 2404792968748, 2483167488748, 3121595927521
Offset: 1

Views

Author

Amiram Eldar, Feb 25 2021

Keywords

Comments

Bernardo Recamán Santos (2015) showed that there is no run of more than 23 consecutive numbers, since numbers of the form 36*k - 6 and 36*k + 6 do not have distinct exponents. Pace Nielsen and Adam P. Goucher showed that there can be only finitely many runs of 23 consecutive numbers (see MathOverflow link).
Aktaş and Ram Murty (2017) gave an explicit upper bound to such a run of 23 numbers. They found the first 5 terms of this sequence (and stated that there are a few more known up to 7*10^8), and said that we may conjecture (based on numerical evidence) that there are no 6 consecutive numbers.

Examples

			16 is a term since 16 = 2^4, 17, 18 = 2*3^2, 19 and 20 = 2^2*5 all have distinct exponents in their prime factorization.
		

Crossrefs

Subsequence of A130091, A342028, A342029 and A342030.

Programs

  • Mathematica
    q[n_] := Length[(e = FactorInteger[n][[;; , 2]])] == Length[Union[e]]; v = q /@ Range[5]; seq = {}; Do[If[And @@ v, AppendTo[seq, k - 5]]; v = Join[Rest[v], {q[k]}], {k, 6, 1.3*10^6}]; seq

Extensions

a(15) and beyond from Martin Ehrenstein, Mar 08 2021