A342031 Starts of runs of 5 consecutive numbers that have mutually distinct exponents in their prime factorization (A130091).
1, 16, 241, 2644, 4372, 1431124, 12502348, 112753348, 750031648, 2844282247, 5882272324, 6741230497, 8004453748, 87346072024, 130489991521, 218551872247, 245127093748, 460925878624, 804065433748, 1176638279524, 2210511903748, 2404792968748, 2483167488748, 3121595927521
Offset: 1
Keywords
Examples
16 is a term since 16 = 2^4, 17, 18 = 2*3^2, 19 and 20 = 2^2*5 all have distinct exponents in their prime factorization.
Links
- Martin Ehrenstein, Table of n, a(n) for n = 1..43
- Kevser Aktaş and M. Ram Murty, On the number of special numbers, Proceedings - Mathematical Sciences, Vol. 127, No. 3 (2017), pp. 423-430; alternative link.
- Bernardo Recamán Santos, Consecutive numbers with mutually distinct exponents in their canonical prime factorization, MathOverflow, Mar 30 2015.
Programs
-
Mathematica
q[n_] := Length[(e = FactorInteger[n][[;; , 2]])] == Length[Union[e]]; v = q /@ Range[5]; seq = {}; Do[If[And @@ v, AppendTo[seq, k - 5]]; v = Join[Rest[v], {q[k]}], {k, 6, 1.3*10^6}]; seq
Extensions
a(15) and beyond from Martin Ehrenstein, Mar 08 2021
Comments