A342033 Decimal expansion of m(10) = Sum_{n>=0} 1/n!10, the 10th reciprocal multifactorial constant.
4, 1, 6, 5, 2, 4, 3, 7, 6, 5, 5, 5, 8, 3, 8, 4, 5, 9, 0, 7, 8, 7, 2, 6, 2, 4, 1, 0, 4, 4, 5, 5, 6, 0, 7, 3, 8, 2, 2, 8, 0, 3, 0, 7, 9, 5, 3, 7, 0, 7, 7, 2, 7, 7, 6, 7, 9, 4, 4, 2, 1, 9, 1, 1, 5, 0, 7, 0, 5, 8, 4, 7, 7, 3, 0, 9, 8, 7, 2, 5, 6, 8, 6, 2, 3, 2, 0, 1, 2, 7, 4, 8, 4, 2, 8, 6, 9, 3, 3, 8, 4, 1, 3, 8
Offset: 1
Examples
4.165243765558384590787262... For n=10, the series is equal to 1+summation from n=1 to 10 (1/n)=9901/2520.
Links
- Eric Weisstein's World of Mathematics, Reciprocal Multifactorial Constant
Crossrefs
Programs
-
Mathematica
Multifactorial[n_, k_] := Abs[Apply[Times, Range[-n, -1, k]]] N[Sum[1/Multifactorial[n, 10], {n, 0, 10000}], 105] (* or *) ReciprocalFactorialSumConstant[k_] := 1/k Exp[1/k] (k + Sum[k^(j/k) Gamma[j/k, 0, 1/k], {j, k - 1}]) N[ReciprocalFactorialSumConstant[10], 105]
Formula
m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} (k^(j/k)*Gamma(j/k, 1/k))) where Gamma(a,x) the incomplete Gamma function.
Comments