This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342041 #10 Feb 18 2022 20:51:46 %S A342041 1,3,1,3,1,1,4,2,1,1,5,4,1,1,1,6,7,2,1,1,1,7,7,2,1,1,1,1,8,7,3,2,1,1, %T A342041 1,1,9,7,5,2,1,1,1,1,1,10,7,6,2,2,1,1,1,1,1,11,7,9,3,2,1,1,1,1,1,1,12, %U A342041 7,13,3,2,2,1,1,1,1,1,1,13,7,13,4 %N A342041 Triangle read by rows: T(n,k) = maximum number of lines of size k on n points so that every two lines intersect in one point. %C A342041 Rows start at n = 2, and terms range from k = 2 to k = n. (When k = 1, there can be arbitrarily many lines.) %C A342041 If a projective plane of order k-1 exists, then for n between k^2-k+1 and k^3-2k^2+3k-2 inclusive, T(n,k) = k^2-k+1. For higher n, T(n,k) = floor((n-1)/(k-1)). %H A342041 Reddit, <a href="https://www.reddit.com/r/math/comments/lsd8ad/what_are_these_fake_projective_planes/">What are these "fake" projective planes?</a> %e A342041 For n = 10, k = 4, the unique arrangement with 5 lines (up to symmetry) is %e A342041 1111000000 %e A342041 1000111000 %e A342041 0100100110 %e A342041 0010010101 %e A342041 0001001011 %e A342041 There are no such arrangements with 6 lines. Thus T(10,4) = 5. %e A342041 These lines are in bijection with the sets of 4 polar axes on a dodecahedron whose endpoints form a cube. %e A342041 Table begins: %e A342041 n\k | 2 3 4 5 6 7 8 9 %e A342041 ----+----------------------- %e A342041 2 | 1; %e A342041 3 | 3, 1; %e A342041 4 | 3, 1, 1; %e A342041 5 | 4, 2, 1, 1; %e A342041 6 | 5, 4, 1, 1, 1; %e A342041 7 | 6, 7, 2, 1, 1, 1; %e A342041 8 | 7, 7, 2, 1, 1, 1, 1; %e A342041 9 | 8, 7, 3, 2, 1, 1, 1, 1; %K A342041 nonn,tabl %O A342041 2,2 %A A342041 _Drake Thomas_, Feb 26 2021