This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342048 #14 Feb 28 2021 18:52:00 %S A342048 1,2,3,4,5,6,7,8,9,10,20,22,30,40,50,60,70,80,90,100,123,132,200,202, %T A342048 213,220,231,300,312,321,400,500,600,700,800,900,1000,1023,1032,1124, %U A342048 1142,1203,1214,1230,1241,1302,1320,1412,1421,2000,2002,2013,2020,2031,2103,2114,2130,2141,2200 %N A342048 Numbers for which the sum of digits equals the product of nonzero digits. %H A342048 Robert Israel, <a href="/A342048/b342048.txt">Table of n, a(n) for n = 1..10000</a> %e A342048 2103 is in the sequence because 2 + 1 + 0 + 3 = 2 * 1 * 3 = 6. %p A342048 q:= n-> (l-> is(add(i, i=l)=mul(i, i=l)))( %p A342048 subs(0=[][], convert(n, base, 10))): %p A342048 select(q, [$0..3300])[]; # _Alois P. Heinz_, Feb 26 2021 %p A342048 # alternative %p A342048 G:= proc(d,dmax,s,p) option remember; local i; %p A342048 if s + dmax*d < p or s > dmax^d*p then return [] fi; %p A342048 if d = 0 then return [[]] fi; %p A342048 [seq(op(map(t -> [i,op(t)], procname(d-1,i,s+i,p*i))),i=1..dmax)] %p A342048 end proc: %p A342048 f:= proc(d) local R,k,i; %p A342048 R:= [seq(op(map(t -> [0$k,op(t)], G(d-k,9,0,1))),k=0..d-1)]; %p A342048 R:= map(op@combinat:-permute,R); %p A342048 sort(map(t -> add(t[i]*10^(i-1),i=1..d),R)) %p A342048 end proc: %p A342048 f(4); # _Robert Israel_, Feb 28 2021 %t A342048 Select[Range[2200], Plus @@ IntegerDigits[#] == Times @@ DeleteCases[IntegerDigits[#], 0] &] %o A342048 (Python) %o A342048 from math import prod %o A342048 def ok(n): %o A342048 digs = list(map(int, str(n))) %o A342048 return sum(digs) == prod([d for d in digs if d != 0]) %o A342048 def aupto(lim): return [m for m in range(1, lim+1) if ok(m)] %o A342048 print(aupto(2200)) # _Michael S. Branicky_, Feb 26 2021 %o A342048 (PARI) isok(k) = my(d=select(x->(x>0), digits(k))); vecprod(d) == vecsum(d); \\ _Michel Marcus_, Feb 26 2021 %Y A342048 Cf. A007953, A034710, A051801. %K A342048 nonn,base %O A342048 1,2 %A A342048 _Ilya Gutkovskiy_, Feb 26 2021