cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342049 Primes formed by the concatenation of exactly two consecutive composite numbers.

This page as a plain text file.
%I A342049 #60 Mar 04 2021 03:20:22
%S A342049 89,5051,5657,6263,6869,8081,9091,9293,120121,186187,188189,200201,
%T A342049 216217,242243,246247,252253,278279,300301,308309,318319,338339,
%U A342049 342343,350351,362363,368369,390391,402403,410411,416417,426427,428429,440441,446447,450451,452453,470471,476477,482483
%N A342049 Primes formed by the concatenation of exactly two consecutive composite numbers.
%C A342049 When a prime is obtained by the concatenation of exactly two consecutive composite numbers, the first one always ends with 0, 2, 6, 8 while the second one ends respectively with 1, 3, 7, 9.
%C A342049 a(1) = 89 is also the smallest prime whose digits are composite (A051416).
%C A342049 a(n) has an even number of digits. If it would have an odd number of digits then it is like 99..99100..00 but that is composite. - _David A. Corneth_, Feb 27 2021
%H A342049 G. L. Honaker, Jr. and Chris Caldwell, <a href="https://primes.utm.edu/curios/page.php?curio_id=646">Prime Curios! 89</a>.
%e A342049 If (2,q) is the smallest term formed by the concatenation of 2 consecutive composite numbers with each q digits: (2,1) = a(1) = 89, (2,2) = a(2) = 5051, (2,3) = a(9) = 120121, (2,4) = 10021003, (2,5) = 1001010011, (2,6) = 100010100011.
%o A342049 (PARI) isc(c) = (c>1) && ! isprime(c);
%o A342049 isok(p) = {if (isprime(p), my(d=digits(p)); for (i=1, #d-1, my(b = fromdigits(vector(i, k, d[k]))); if (d[i+1], my(c = fromdigits(vector(#d-i, k, d[k+i]))); if (isc(b) && isc(c) && ((primepi(c) - primepi(b)) == c-b-1), return (1)); ); ); ); } \\ _Michel Marcus_, Feb 27 2021
%o A342049 (PARI) first(n) = { pc = 4; my(res = vector(n)); t = 0; forcomposite(c = 6, oo, nc = pc * 10^#digits(c) + c; if(isprime(nc), t++; res[t] = nc; if(t >= n, return(res) ) ); pc = c; ) } \\ _David A. Corneth_, Feb 27 2021
%o A342049 (PARI) is(n) = { my(d = digits(n)); if(#d % 2 == 1, return(0) ); fc = fromdigits(vector(#d \ 2, i, d[i])); lc = fromdigits(vector(#d \ 2, i, d[i+#d\2])); lc - fc == 1 && !isprime(fc) && !isprime(lc) && nextprime(fc)==nextprime(lc) && isprime(n) } \\ _David A. Corneth_, Feb 27 2021
%o A342049 (Python)
%o A342049 from sympy import isprime
%o A342049 def agento(lim):
%o A342049   digs, pow10 = 1, 10
%o A342049   while True:
%o A342049     for c2 in range(max(pow10//10+1, 3), pow10, 2):
%o A342049       if not isprime(c2) and not isprime(c2-1):
%o A342049         c1c2 = (c2-1)*pow10+c2
%o A342049         if c1c2 > lim: return
%o A342049         if isprime(c1c2): yield c1c2
%o A342049     digs, pow10 = digs+1, pow10*10
%o A342049 print([an for an in agento(482483)]) # _Michael S. Branicky_, Feb 27 2021
%Y A342049 Cf. A002808, A087341.
%Y A342049 Subsequence of A030458 and A121608.
%K A342049 nonn,base
%O A342049 1,1
%A A342049 _Bernard Schott_, Feb 26 2021