This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342050 #31 Apr 25 2022 17:00:45 %S A342050 2,4,8,10,14,16,20,22,26,28,30,32,34,38,40,44,46,50,52,56,58,60,62,64, %T A342050 68,70,74,76,80,82,86,88,90,92,94,98,100,104,106,110,112,116,118,120, %U A342050 122,124,128,130,134,136,140,142,146,148,150,152,154,158,160,164,166,170,172,176,178,180,182,184,188,190,194,196,200,202,206,208,212 %N A342050 Numbers k which have an odd number of trailing zeros in their primorial base representation A049345(k). %C A342050 Numbers k such that A276084(k) is odd. %C A342050 All the terms are even since odd numbers have 0 trailing zeros, and 0 is not odd. %C A342050 The number of terms not exceeding A002110(m) for m>=1 is A002110(m) * Sum_{k=1..m}(-1)^k/A002110(k) = 1, 2, 11, 76, 837, 10880, 184961, ... %C A342050 The asymptotic density of this sequence is Sum_{k>=1} (-1)^(k+1)/A002110(k) = 0.362306... (A132120). %C A342050 Also Heinz numbers of partitions with even least gap. The least gap (mex or minimal excludant) of a partition is the least positive integer that is not a part. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. - _Gus Wiseman_, Apr 23 2021 %C A342050 Numbers k such that A000720(A053669(k)) is even. Differences from the related A353531 seem to be terms that are multiples of 210, but not all of them, for example primorial 30030 (= 143*210) is in neither sequence. Consider also A038698. - _Antti Karttunen_, Apr 25 2022 %H A342050 Amiram Eldar, <a href="/A342050/b342050.txt">Table of n, a(n) for n = 1..10000</a> %H A342050 George E. Andrews and David Newman, <a href="https://doi.org/10.1007/s00026-019-00427-w">Partitions and the Minimal Excludant</a>, Annals of Combinatorics, Volume 23, May 2019, Pages 249-254. %H A342050 Brian Hopkins, James A. Sellers, and Dennis Stanton, <a href="https://arxiv.org/abs/2009.10873">Dyson's Crank and the Mex of Integer Partitions</a>, arXiv:2009.10873 [math.CO], 2020. %H A342050 Wikipedia, <a href="https://en.wikipedia.org/wiki/Mex_(mathematics)">Mex (mathematics)</a> %H A342050 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A342050 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %e A342050 2 is a term since A049345(2) = 10 has 1 trailing zero. %e A342050 4 is a term since A049345(2) = 20 has 1 trailing zero. %e A342050 30 is a term since A049345(2) = 1000 has 3 trailing zeros. %e A342050 From _Gus Wiseman_, Apr 23 2021: (Start) %e A342050 The sequence of terms together with their prime indices begins: %e A342050 2: {1} 46: {1,9} 90: {1,2,2,3} %e A342050 4: {1,1} 50: {1,3,3} 92: {1,1,9} %e A342050 8: {1,1,1} 52: {1,1,6} 94: {1,15} %e A342050 10: {1,3} 56: {1,1,1,4} 98: {1,4,4} %e A342050 14: {1,4} 58: {1,10} 100: {1,1,3,3} %e A342050 16: {1,1,1,1} 60: {1,1,2,3} 104: {1,1,1,6} %e A342050 20: {1,1,3} 62: {1,11} 106: {1,16} %e A342050 22: {1,5} 64: {1,1,1,1,1,1} 110: {1,3,5} %e A342050 26: {1,6} 68: {1,1,7} 112: {1,1,1,1,4} %e A342050 28: {1,1,4} 70: {1,3,4} 116: {1,1,10} %e A342050 30: {1,2,3} 74: {1,12} 118: {1,17} %e A342050 32: {1,1,1,1,1} 76: {1,1,8} 120: {1,1,1,2,3} %e A342050 34: {1,7} 80: {1,1,1,1,3} 122: {1,18} %e A342050 38: {1,8} 82: {1,13} 124: {1,1,11} %e A342050 40: {1,1,1,3} 86: {1,14} 128: {1,1,1,1,1,1,1} %e A342050 44: {1,1,5} 88: {1,1,1,5} 130: {1,3,6} %e A342050 (End) %t A342050 seq[max_] := Module[{bases = Prime@Range[max, 1, -1], nmax}, nmax = Times @@ bases - 1; Select[Range[nmax], OddQ @ LengthWhile[Reverse @ IntegerDigits[#, MixedRadix[bases]], #1 == 0 &] &]]; seq[4] %t A342050 Select[Range[100],EvenQ[Min@@Complement[Range[PrimeNu[#]+1],PrimePi/@First/@FactorInteger[#]]]&] (* _Gus Wiseman_, Apr 23 2021 *) %o A342050 (PARI) %o A342050 A353525(n) = { for(i=1,oo,if(n%prime(i),return((i+1)%2))); } %o A342050 isA342050(n) = A353525(n); %o A342050 k=0; n=0; while(k<77, n++; if(isA342050(n), k++; print1(n,", "))); \\ _Antti Karttunen_, Apr 25 2022 %Y A342050 Cf. A002110, A049345, A053669, A132120, A276084. %Y A342050 Complement of A342051. %Y A342050 A099800 is subsequence. %Y A342050 Analogous sequences: A001950 (Zeckendorf representation), A036554 (binary), A145204 (ternary), A217319 (base 4), A232745 (factorial base). %Y A342050 The version for reversed binary expansion is A079523. %Y A342050 Positions of even terms in A257993. %Y A342050 A000070 counts partitions with a selected part. %Y A342050 A056239 adds up prime indices, row sums of A112798. %Y A342050 A073491 lists numbers with gap-free prime indices. %Y A342050 A079067 counts gaps in prime indices. %Y A342050 A238709 counts partitions by sum and least difference. %Y A342050 A333214 lists positions of adjacent unequal prime gaps. %Y A342050 A339662 gives greatest gap in prime indices. %Y A342050 Cf. A000720, A001223, A005408, A026794, A029707, A038698, A047235, A079068, A121539, A286469, A286470, A325351, A353525 (characteristic function). %Y A342050 Differs from A353531 for the first time at n=77, where a(77) = 212, as this sequence misses A353531(77) = 210. %K A342050 nonn,base %O A342050 1,1 %A A342050 _Amiram Eldar_, Feb 26 2021 %E A342050 More terms added (to differentiate from A353531) by _Antti Karttunen_, Apr 25 2022