This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342061 #14 Jan 02 2022 16:09:59 %S A342061 1,1,1,1,1,1,1,2,2,1,1,3,8,3,1,1,4,16,16,4,1,1,5,38,63,38,5,1,1,7,72, %T A342061 218,218,72,7,1,1,8,134,622,1075,622,134,8,1,1,10,224,1600,4214,4214, %U A342061 1600,224,10,1,1,12,375,3703,14381,22222,14381,3703,375,12,1 %N A342061 Triangle read by rows: T(n,k) is the number of sensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n. %C A342061 The number of faces is n + 2 - k. %H A342061 Andrew Howroyd, <a href="/A342061/b342061.txt">Table of n, a(n) for n = 2..1276</a> (first 50 rows) %H A342061 Timothy R. Walsh, <a href="https://doi.org/10.1016/j.disc.2004.08.036">Efficient enumeration of sensed planar maps</a>, Discrete Math. 293 (2005), no. 1-3, 263--289. MR2136069 (2006b:05062). %F A342061 T(n,k) = T(n, n+2-k). %e A342061 Triangle begins: %e A342061 1; %e A342061 1, 1; %e A342061 1, 1, 1; %e A342061 1, 2, 2, 1; %e A342061 1, 3, 8, 3, 1; %e A342061 1, 4, 16, 16, 4, 1; %e A342061 1, 5, 38, 63, 38, 5, 1; %e A342061 1, 7, 72, 218, 218, 72, 7, 1; %e A342061 1, 8, 134, 622, 1075, 622, 134, 8, 1; %e A342061 ... %o A342061 (PARI) \\ See section 4 of Walsh reference. %o A342061 T(n)={ %o A342061 my(B=matrix(n, n, i, j, if(i+j <= n+1, (2*i+j-2)!*(2*j+i-2)!/(i!*j!*(2*i-1)!*(2*j-1)!)))); %o A342061 my(C(i,j)=((i+j-1)*(i+1)*(j+1)/(2*(2*i+j-1)*(2*j+i-1)))*B[(i+1)/2,(j+1)/2]); %o A342061 my(D(i,j)=((j+1)/2)*B[i/2, (j+1)/2]); %o A342061 my(E(i,j)=((i-1)*(j-1) + 2*(i+j)*(i+j-1))*B[i,j]); %o A342061 my(F(i,j)=if(!i, j==1, ((i+j)*(6*j+2*i-5)*j*(2*i+j-1)/(2*(2*i+1)*(2*j+i-2)))*B[i,j]) + if(j-1, binomial(i+2,2)*B[i+1,j-1])); %o A342061 vector(n, n, vector(n, i, my(j=n+1-i); B[i,j] %o A342061 + (i+j)*if(i%2, if(j%2, C(i,j), D(j,i)), if(j%2, D(i,j))) %o A342061 + sumdiv(i+j, d, if(d>1, eulerphi(d)*( if(i%d==0, E(i/d, j/d) ) + if(i%d==1, F((i-1)/d, (j+1)/d)) + if(j%d==1, F((j-1)/d, (i+1)/d)) ))) %o A342061 )/(2*n+2)); %o A342061 } %o A342061 { my(A=T(10)); for(n=1, #A, print(A[n])) } %Y A342061 Column k=3 is A001399(n-3). %Y A342061 Row sums are A006402. %Y A342061 Cf. A082680 (rooted), A239893, A342059. %K A342061 nonn,tabl %O A342061 2,8 %A A342061 _Andrew Howroyd_, Mar 30 2021