cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342064 Primes p such that p^8 - 1 has 384 divisors.

This page as a plain text file.
%I A342064 #11 Jul 08 2025 11:02:51
%S A342064 821,997,2819,6619,17827,20947,24917,42709,43411,46141,49261,51691,
%T A342064 80077,108803,158981,159539,161341,171659,202667,228611,268573,304477,
%U A342064 315803,350971,420781,447683,463459,816709,848227,887989,953773,991811,1056829,1131379
%N A342064 Primes p such that p^8 - 1 has 384 divisors.
%C A342064 Conjecture: sequence is infinite.
%C A342064 For every term p, p^8 - 1 is of the form 2^5 * 3 * 5 * q * r * s * t, where q, r, s, and t are distinct primes > 5 (see Example section).
%e A342064    p =
%e A342064 n  a(n)               factorization of p^8 - 1
%e A342064 - ----- -----------------------------------------------------
%e A342064 1  821  2^5 * 3 * 5 *  41 *  137 *   337021 *    227165634841
%e A342064 2  997  2^5 * 3 * 5 *  83 *  499 *    99401 *    494026946041
%e A342064 3 2819  2^5 * 3 * 5 *  47 * 1409 *  3973381 *  31575505195561
%e A342064 4 6619  2^5 * 3 * 5 * 331 * 1103 * 21905581 * 959708914083961
%t A342064 Select[Prime[Range[90000]],DivisorSigma[0,#^8-1]==384&] (* _Harvey P. Dale_, Jul 08 2025 *)
%Y A342064 Cf. A000005, A000040, A309906, A342062, A342063.
%K A342064 nonn
%O A342064 1,1
%A A342064 _Jon E. Schoenfield_, Feb 27 2021