A342065 Primes p such that p^9 - 1 has 16 divisors.
383, 12227, 44519, 44687, 56003, 97523, 130259, 148727, 160739, 169007, 208799, 258887, 270563, 281783, 331883, 336143, 353099, 364979, 498119, 501707, 550679, 573107, 577667, 716747, 753023, 775367, 781007, 784727, 861299, 887543, 1084247, 1085159, 1099139
Offset: 1
Keywords
Examples
factorization of p^9 - 1 p = =================================================== n a(n) 2 * (p-1)/2 * (p^2+p+1) * (p^6 + p^3 + 1) - ----- --------------------------------------------------- 1 383 2 * 191 * 147073 * 3156404483062657 2 12227 2 * 6113 * 149511757 * 3341330794198073514753973
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
R:= NULL: count:= 0: q:= 1: while count < 100 do q:= nextprime(q); p:= 2*q+1; if isprime(p) and isprime(p^2+p+1) and isprime(p^6+p^3+1) then count:= count+1; R:= R, p; fi od: R; # Robert Israel, Feb 28 2021
Comments