A342075 Number of n-colorings of the vertices of the 7-dimensional cross polytope such that no two adjacent vertices have the same color.
0, 0, 0, 0, 0, 0, 0, 5040, 322560, 10342080, 216518400, 3261535200, 37026823680, 325474269120, 2264594492160, 12789814237200, 60389186457600, 245221330273920, 877374833287680, 2821277454690240, 8284633867238400, 22503569636419200, 57135310310453760
Offset: 0
Keywords
Links
- Peter Kagey, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
Crossrefs
Programs
-
Mathematica
p = ChromaticPolynomial[CompleteGraph[Table[2, 7]], x]; Table[p /. x -> n, {n, 0, 50}]
Formula
a(n) = -3597143040*n + 11590795728*n^2 - 15837356724*n^3 + 12355698460*n^4 - 6212542175*n^5 + 2144307578*n^6 - 526197678*n^7 + 93450369*n^8 - 12064836*n^9 + 1122618*n^10 - 73423*n^11 + 3206*n^12 - 84*n^13 + n^14.
a(n) = (n - 6)*(n - 5)*(n - 4)*(n - 3)*(n - 2)*(n - 1)*n*(n^7 - 63 n^6 + 1708 n^5 - 25795 n^4 + 234094 n^3 - 1275281 n^2 + 3858049 n - 4996032).
a(n) = Sum_{i=1..14} A334279(7,i)*n^i.
From Chai Wah Wu, Jan 19 2024: (Start)
a(n) = 15*a(n-1) - 105*a(n-2) + 455*a(n-3) - 1365*a(n-4) + 3003*a(n-5) - 5005*a(n-6) + 6435*a(n-7) - 6435*a(n-8) + 5005*a(n-9) - 3003*a(n-10) + 1365*a(n-11) - 455*a(n-12) + 105*a(n-13) - 15*a(n-14) + a(n-15) for n > 14.
G.f.: x^7*(-52370755920*x^7 - 27190754640*x^6 - 6557740560*x^5 - 959792400*x^4 - 92962800*x^3 - 6032880*x^2 - 246960*x - 5040)/(x - 1)^15. (End)