This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342076 #8 Feb 28 2021 10:09:49 %S A342076 1,11,12,2,3,31,13,32,21,14,4,5,51,15,52,22,23,33,34,41,16,6,7,71,17, %T A342076 72,24,42,25,53,35,54,43,36,61,18,8,9,91,19,92,26,62,27,73,37,74,44, %U A342076 45,55,56,63,38,81,100,66,77,88,99,111,122,112,28,82,29,93,39,94,46,64,47,75,57,76,65,58,83,300 %N A342076 Digits only come in successive pairs (separated or not by a comma). %C A342076 The sequence starts with a(1) = 1 and is always extended with the smallest positive integer not yet present that does not lead to a contradiction. %C A342076 No term can end with an odd number of successive 0. %C A342076 This is not the sequence A329127 as they diverge at a(55). %e A342076 a(1) = 1 forces the next digit to be a 1 (as digits must come in pairs); the smallest positive integer not yet present that starts with a 1 and does not lead to a contradiction is 11 (as 10, ending with an odd number of 0, is forbidden). Thus, a(2) = 11; %e A342076 a(3) = 12 as a(3) must start with a 1 (to complete a pair of identical digits), and 12 is the smallest positive integer not yet present that does not lead to a contradiction; %e A342076 a(4) = 2 as 2 is the smallest positive integer not yet present that starts with a 2 and does not lead to a contradiction; etc. %o A342076 (Python) %o A342076 mustpair = set(range(10)) %o A342076 def pairsup(n, offset=0): %o A342076 digits = list(map(int, str(n)))[offset:] %o A342076 if len(digits) == 0: return True, False %o A342076 i = 0 %o A342076 while i < len(digits) - 1: %o A342076 if digits[i] in mustpair: %o A342076 if digits[i] != digits[i+1]: return False, None %o A342076 else: i += 2 %o A342076 else: i += 1 %o A342076 unpaired = digits[-1] in mustpair and i != len(digits) %o A342076 return not (unpaired and digits[-1] == 0), unpaired %o A342076 def aupton(terms, startswith=1): %o A342076 alst, unpaired = [startswith], startswith in mustpair %o A342076 for n in range(2, terms+1): %o A342076 m = 1 %o A342076 while True: %o A342076 while m in alst: m += 1 %o A342076 if not unpaired or int(str(m)[0]) == alst[-1]%10: %o A342076 passes, temp = pairsup(m, offset=int(unpaired)) %o A342076 if passes: alst.append(m); unpaired = temp; break %o A342076 m += 1 %o A342076 return alst %o A342076 print(aupton(66)) # _Michael S. Branicky_, Feb 28 2021 %Y A342076 Cf. A342077, A342078 and A342079 (variations on the same idea), A329127 (first 54 terms are the same). %K A342076 base,nonn %O A342076 1,2 %A A342076 _Eric Angelini_, Feb 28 2021