cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342084 Number of chains of distinct strictly superior divisors starting with n.

This page as a plain text file.
%I A342084 #21 Nov 02 2024 09:13:56
%S A342084 1,1,1,1,1,2,1,2,1,2,1,4,1,2,2,3,1,4,1,4,2,2,1,9,1,2,2,4,1,7,1,6,2,2,
%T A342084 2,10,1,2,2,9,1,6,1,4,4,2,1,19,1,4,2,4,1,8,2,9,2,2,1,20,1,2,4,10,2,6,
%U A342084 1,4,2,7,1,29,1,2,4,4,2,6,1,19,3,2,1,19,2
%N A342084 Number of chains of distinct strictly superior divisors starting with n.
%C A342084 We define a divisor d|n to be strictly superior if d > n/d. Strictly superior divisors are counted by A056924 and listed by A341673.
%C A342084 These chains have first-quotients (in analogy with first-differences) that are term-wise < their decapitation (maximum element removed). Equivalently, x < y^2 for all adjacent x, y. For example, the divisor chain q = 30/6/3 has first-quotients (5,2), which are < (6,3), so q is counted under a(30).
%C A342084 Also the number of ordered factorizations of n where each factor is less than the product of all previous factors.
%H A342084 Amiram Eldar, <a href="/A342084/b342084.txt">Table of n, a(n) for n = 1..10000</a>
%F A342084 a(2^n) = A045690(n).
%e A342084 The a(n) chains for n = 2, 6, 12, 16, 24, 30, 32, 36:
%e A342084   2  6    12      16      24         30       32         36
%e A342084      6/3  12/4    16/8    24/6       30/6     32/8       36/9
%e A342084           12/6    16/8/4  24/8       30/10    32/16      36/12
%e A342084           12/6/3          24/12      30/15    32/8/4     36/18
%e A342084                           24/6/3     30/6/3   32/16/8    36/12/4
%e A342084                           24/8/4     30/10/5  32/16/8/4  36/12/6
%e A342084                           24/12/4    30/15/5             36/18/6
%e A342084                           24/12/6                        36/18/9
%e A342084                           24/12/6/3                      36/12/6/3
%e A342084                                                          36/18/6/3
%e A342084 The a(n) ordered factorizations for n = 2, 6, 12, 16, 24, 30, 32, 36:
%e A342084   2  6    12     16     24       30     32       36
%e A342084      3*2  4*3    8*2    6*4      6*5    8*4      9*4
%e A342084           6*2    4*2*2  8*3      10*3   16*2     12*3
%e A342084           3*2*2         12*2     15*2   4*2*4    18*2
%e A342084                         3*2*4    3*2*5  8*2*2    4*3*3
%e A342084                         4*2*3    5*2*3  4*2*2*2  6*2*3
%e A342084                         4*3*2    5*3*2           6*3*2
%e A342084                         6*2*2                    9*2*2
%e A342084                         3*2*2*2                  3*2*2*3
%e A342084                                                  3*2*3*2
%t A342084 ceo[n_]:=Prepend[Prepend[#,n]&/@Join@@ceo/@Select[Most[Divisors[n]],#>n/#&],{n}];
%t A342084 Table[Length[ceo[n]],{n,100}]
%Y A342084 The restriction to powers of 2 is A045690, with reciprocal version A040039.
%Y A342084 The inferior version is A337135.
%Y A342084 The strictly inferior version is A342083.
%Y A342084 The superior version is A342085.
%Y A342084 The additive version allowing equality is A342094 or A342095.
%Y A342084 The additive version is A342096 or A342097.
%Y A342084 A000005 counts divisors.
%Y A342084 A001055 counts factorizations.
%Y A342084 A003238 counts divisibility chains summing to n-1, with strict case A122651.
%Y A342084 A038548 counts inferior (or superior) divisors.
%Y A342084 A056924 counts strictly inferior (or strictly superior) divisors.
%Y A342084 A067824 counts strict chains of divisors starting with n.
%Y A342084 A074206 counts strict chains of divisors from n to 1 (also ordered factorizations).
%Y A342084 A167865 counts strict chains of divisors > 1 summing to n.
%Y A342084 A207375 lists central divisors.
%Y A342084 A253249 counts strict chains of divisors.
%Y A342084 A334996 counts ordered factorizations by product and length.
%Y A342084 A334997 counts chains of divisors of n by length.
%Y A342084 - Inferior: A033676, A063962, A066839, A072499, A161906.
%Y A342084 - Superior: A033677, A070038, A161908, A341591.
%Y A342084 - Strictly Inferior: A060775, A070039, A333806, A341674.
%Y A342084 - Strictly Superior: A064052/A048098, A140271, A238535, A341642, A341673.
%Y A342084 Cf. A000203, A000929, A001248, A006530, A018819, A020639, A169594, A337105, A342098.
%K A342084 nonn
%O A342084 1,6
%A A342084 _Gus Wiseman_, Feb 28 2021