This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342086 #10 Mar 10 2021 12:23:31 %S A342086 1,2,2,3,2,5,2,5,3,5,2,9,2,5,5,7,2,9,2,9,5,5,2,16,3,5,5,9,2,15,2,10,5, %T A342086 5,5,18,2,5,5,16,2,15,2,9,9,5,2,25,3,9,5,9,2,16,5,16,5,5,2,31,2,5,9, %U A342086 14,5,15,2,9,5,15,2,34,2,5,9,9,5,15,2,25,7,5 %N A342086 Number of strict factorizations of divisors of n. %C A342086 A strict factorization of n is a set of distinct positive integers > 1 with product n. %H A342086 Robert Israel, <a href="/A342086/b342086.txt">Table of n, a(n) for n = 1..10000</a> %e A342086 The a(1) = 1 through a(12) = 9 factorizations: %e A342086 () () () () () () () () () () () () %e A342086 (2) (3) (2) (5) (2) (7) (2) (3) (2) (11) (2) %e A342086 (4) (3) (4) (9) (5) (3) %e A342086 (6) (8) (10) (4) %e A342086 (2*3) (2*4) (2*5) (6) %e A342086 (12) %e A342086 (2*3) %e A342086 (2*6) %e A342086 (3*4) %p A342086 sf1:= proc(n,m) %p A342086 local D,d; %p A342086 if n = 1 then return 1 fi; %p A342086 D:= select(`<`,numtheory:-divisors(n) minus {1},m); %p A342086 add( procname(n/d,d), d= D) %p A342086 end proc: %p A342086 sf:= proc(n) option remember; sf1(n,n+1) end proc:f:= proc(n) local d; add(sf(d),d=numtheory:-divisors(n)) end proc:map(f, [$1..100]); # _Robert Israel_, Mar 10 2021 %t A342086 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A342086 Table[Sum[Length[Select[facs[k],UnsameQ@@#&]],{k,Divisors[n]}],{n,30}] %Y A342086 A version for partitions is A026906 (strict partitions of 1..n). %Y A342086 A version for partitions is A036469 (strict partitions of 0..n). %Y A342086 A version for partitions is A047966 (strict partitions of divisors). %Y A342086 The non-strict version is A057567. %Y A342086 A000005 counts divisors, with sum A000203. %Y A342086 A000009 counts strict partitions. %Y A342086 A001055 counts factorizations, with strict case A045778. %Y A342086 A001221 counts prime divisors, with sum A001414. %Y A342086 A001222 counts prime-power divisors. %Y A342086 A005117 lists squarefree numbers. %Y A342086 Cf. A001227, A050320, A340101, A340596, A340654, A340655, A340853, A341596, A341673, A341674, A342097. %K A342086 nonn %O A342086 1,2 %A A342086 _Gus Wiseman_, Mar 05 2021