This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342088 #28 Feb 16 2025 08:34:01 %S A342088 1,1,1,1,4,2,1,9,18,6,1,16,84,96,24,1,25,260,780,600,120,1,36,630, %T A342088 4080,7560,4320,720,1,49,1302,15330,61320,78120,35280,5040,1,64,2408, %U A342088 45696,351120,913920,866880,322560,40320 %N A342088 Triangle read by rows: T(n,k) is the number of n-colorings of the vertices of the k-dimensional cross polytope such that no two adjacent vertices have the same color. 0 <= k <= n. %H A342088 Peter Kagey, <a href="/A342088/b342088.txt">Rows n = 0..100, flattened</a> %H A342088 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChromaticPolynomial.html">Chromatic Polynomial</a> %H A342088 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CocktailPartyGraph.html">Cocktail Party Graph</a> %H A342088 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cross-polytope">Cross-polytope</a> %H A342088 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tur%C3%A1n_graph">TurĂ¡n graph</a> %F A342088 T(n,n) = n!. %F A342088 T(n,k) = Sum_{i=0..2*k} A334279(k,i)*n^i. %F A342088 T(n,k) = n*T(n-1,k-1) + n*(n-1)*T(n-2,k-1). %F A342088 T(n,k) = Sum_{j=0..k} n!k!/((n-k-j)!(k-j)!j!). %e A342088 Triangle begins: %e A342088 n\k| 0 1 2 3 4 5 6 7 8 %e A342088 ---+---------------------------------------------------------- %e A342088 0 | 1 %e A342088 1 | 1, 1 %e A342088 2 | 1, 4, 2 %e A342088 3 | 1, 9, 18, 6 %e A342088 4 | 1, 16, 84, 96, 24 %e A342088 5 | 1, 25, 260, 780, 600, 120 %e A342088 6 | 1, 36, 630, 4080, 7560, 4320, 720 %e A342088 7 | 1, 49, 1302, 15330, 61320, 78120, 35280, 5040 %e A342088 8 | 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320 %t A342088 T[n_, k_] := Sum[n! k!/((n - k - j)! (k - j)! j!), {j, 0, k}] %Y A342088 Cf. A000012 (k=0), A000290 (k=1), A091940 (k=2), A115400 (k=3), A334281 (k=4), A342073 (k=5), A342074 (k=6), A342075 (k=7). %Y A342088 Cf. A334279. %K A342088 nonn,tabl %O A342088 0,5 %A A342088 _Peter Kagey_, Feb 27 2021