A342089 Numbers that have two representations as the sum of distinct non-consecutive Lucas numbers (A000032).
5, 12, 16, 23, 30, 34, 41, 45, 52, 59, 63, 70, 77, 81, 88, 92, 99, 106, 110, 117, 121, 128, 135, 139, 146, 153, 157, 164, 168, 175, 182, 186, 193, 200, 204, 211, 215, 222, 229, 233, 240, 244, 251, 258, 262, 269, 276, 280, 287, 291, 298, 305, 309, 316, 320, 327
Offset: 1
Keywords
Examples
5 is a term since it has two representations: L(0) + L(2) = 2 + 3 and L(1) + L(3) = 1 + 4. 12 is a term since it has two representations: L(1) + L(5) = 1 + 11 and L(0) + L(2) + L(4) = 2 + 3 + 7.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- John L. Brown, Jr., Unique representation of integers as sums of distinct Lucas numbers, The Fibonacci Quarterly, Vol. 7, No. 3 (1969), pp. 243-252.
- Hung V. Chu, David C. Luo and Steven J. Miller, On Zeckendorf Related Partitions Using the Lucas Sequence, arXiv:2004.08316 [math.NT], 2020-2021.
- David C. Luo, Java code for calculating non-consecutive partitions of natural numbers in any infinite integer sequence given by a second-order linear recurrence, GitHub.
- Jeffrey Shallit, Proving Properties of phi-Representations with the Walnut Theorem-Prover, arXiv:2305.02672 [math.NT], 2023.
Programs
-
Java
See David C. Luo's GitHub link.
-
Maple
L:= [seq(combinat:-fibonacci(n+1)+combinat:-fibonacci(n-1), n=0..40)]: f1:= proc(n, m) option remember; if n = 0 then return 1 fi; if m <= 0 then 0 elif L[m] <= n then procname(n - L[m],m-2) + procname(n, m-1) else procname(n,m-1) fi end proc: filter:= n -> f1(n,ListTools:-BinaryPlace(L,n+1))=2: select(filter, [$1..1000]); # Robert Israel, Mar 10 2021
-
Mathematica
L = Table[Fibonacci[n+1] + Fibonacci[n-1], {n, 0, 40}]; f1[n_, m_] := f1[n, m] = If[n == 0, Return[1], Which[m <= 0, 0, L[[m]] <= n, f1[n-L[[m]], m-2] + f1[n, m-1], True, f1[n, m-1]]]; filterQ[n_] := f1[n, FirstPosition[L, b_ /; b > n+1][[1]]-1] == 2; Select[Range[1000], filterQ] (* Jean-François Alcover, Aug 27 2022, after Robert Israel *)
Comments