This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342095 #11 Jan 29 2022 04:20:36 %S A342095 1,1,2,1,2,3,3,2,4,4,6,7,6,8,10,9,13,16,17,20,25,26,29,36,40,45,55,61, %T A342095 69,81,90,103,119,132,154,176,196,225,254,282,323,364,403,458,519,582, %U A342095 655,735,822,922,1035,1153,1290,1441,1600,1788,1997,2217,2468 %N A342095 Number of strict integer partitions of n with no adjacent parts having quotient > 2. %C A342095 The decapitation of such a partition (delete the greatest part) is term-wise greater than or equal to its negated first-differences. %H A342095 Fausto A. C. Cariboni, <a href="/A342095/b342095.txt">Table of n, a(n) for n = 1..400</a> %e A342095 The a(1) = 1 through a(15) = 10 partitions (A..F = 10..15): %e A342095 1 2 3 4 5 6 7 8 9 A B C D E F %e A342095 21 32 42 43 53 54 64 65 75 76 86 87 %e A342095 321 421 63 532 74 84 85 95 96 %e A342095 432 4321 542 543 643 653 A5 %e A342095 632 642 742 743 654 %e A342095 5321 5421 6421 842 753 %e A342095 6321 5432 843 %e A342095 7421 6432 %e A342095 8421 %e A342095 54321 %t A342095 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Thread[Differences[-#]<=Rest[#]]&]],{n,30}] %Y A342095 The reciprocal version (no adjacent parts having quotient < 2) is A000929. %Y A342095 The case of equality (all adjacent parts having quotient 2) is A154402. %Y A342095 The multiplicative version is A342085 or A337135. %Y A342095 The non-strict version is A342094. %Y A342095 The non-strict version without quotients of 2 exactly is A342096. %Y A342095 The version without quotients of 2 exactly is A342097. %Y A342095 A000009 counts strict partitions. %Y A342095 A003114 counts partitions with adjacent parts differing by more than 1. %Y A342095 A034296 counts partitions with adjacent parts differing by at most 1. %Y A342095 Cf. A001055, A001227, A003242, A056239, A167606, A342083, A342084. %K A342095 nonn %O A342095 1,3 %A A342095 _Gus Wiseman_, Mar 02 2021