This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342096 #11 Feb 01 2022 05:12:18 %S A342096 1,2,2,3,3,4,4,6,6,8,9,11,13,17,19,24,29,35,42,51,61,75,90,108,130, %T A342096 158,189,227,272,325,389,464,553,659,782,929,1102,1306,1545,1824,2153, %U A342096 2538,2989,3514,4127,4842,5673,6642,7766,9068,10583,12335,14361,16705 %N A342096 Number of integer partitions of n with no adjacent parts having quotient >= 2. %C A342096 The decapitation of such a partition (delete the greatest part) is term-wise greater than its negated first-differences. %H A342096 Fausto A. C. Cariboni, <a href="/A342096/b342096.txt">Table of n, a(n) for n = 1..250</a> %e A342096 The a(1) = 1 through a(10) = 8 partitions: %e A342096 1 2 3 4 5 6 7 8 9 A %e A342096 11 111 22 32 33 43 44 54 55 %e A342096 1111 11111 222 322 53 333 64 %e A342096 111111 1111111 332 432 433 %e A342096 2222 3222 532 %e A342096 11111111 111111111 3322 %e A342096 22222 %e A342096 1111111111 %t A342096 Table[Length[Select[IntegerPartitions[n],And@@Thread[Differences[-#]<Rest[#]]&]],{n,30}] %Y A342096 The case of equality (all adjacent parts having quotient 2) is A154402. %Y A342096 The multiplicative version is A342083 or A342084. %Y A342096 The version allowing quotients of 2 exactly is A342094. %Y A342096 The strict case allowing quotients of 2 exactly is A342095. %Y A342096 The strict case is A342097. %Y A342096 The reciprocal version is A342098. %Y A342096 A000009 counts strict partitions. %Y A342096 A000929 counts partitions with no adjacent parts having quotient < 2. %Y A342096 A003114 counts partitions with adjacent parts differing by more than 1. %Y A342096 A034296 counts partitions with adjacent parts differing by at most 1. %Y A342096 Cf. A027193, A001055, A001227, A003242, A167606, A342085, A342191. %K A342096 nonn %O A342096 1,2 %A A342096 _Gus Wiseman_, Mar 02 2021