cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342096 Number of integer partitions of n with no adjacent parts having quotient >= 2.

This page as a plain text file.
%I A342096 #11 Feb 01 2022 05:12:18
%S A342096 1,2,2,3,3,4,4,6,6,8,9,11,13,17,19,24,29,35,42,51,61,75,90,108,130,
%T A342096 158,189,227,272,325,389,464,553,659,782,929,1102,1306,1545,1824,2153,
%U A342096 2538,2989,3514,4127,4842,5673,6642,7766,9068,10583,12335,14361,16705
%N A342096 Number of integer partitions of n with no adjacent parts having quotient >= 2.
%C A342096 The decapitation of such a partition (delete the greatest part) is term-wise greater than its negated first-differences.
%H A342096 Fausto A. C. Cariboni, <a href="/A342096/b342096.txt">Table of n, a(n) for n = 1..250</a>
%e A342096 The a(1) = 1 through a(10) = 8 partitions:
%e A342096   1  2   3    4     5      6       7        8         9          A
%e A342096      11  111  22    32     33      43       44        54         55
%e A342096               1111  11111  222     322      53        333        64
%e A342096                            111111  1111111  332       432        433
%e A342096                                             2222      3222       532
%e A342096                                             11111111  111111111  3322
%e A342096                                                                  22222
%e A342096                                                                  1111111111
%t A342096 Table[Length[Select[IntegerPartitions[n],And@@Thread[Differences[-#]<Rest[#]]&]],{n,30}]
%Y A342096 The case of equality (all adjacent parts having quotient 2) is A154402.
%Y A342096 The multiplicative version is A342083 or A342084.
%Y A342096 The version allowing quotients of 2 exactly is A342094.
%Y A342096 The strict case allowing quotients of 2 exactly is A342095.
%Y A342096 The strict case is A342097.
%Y A342096 The reciprocal version is A342098.
%Y A342096 A000009 counts strict partitions.
%Y A342096 A000929 counts partitions with no adjacent parts having quotient < 2.
%Y A342096 A003114 counts partitions with adjacent parts differing by more than 1.
%Y A342096 A034296 counts partitions with adjacent parts differing by at most 1.
%Y A342096 Cf. A027193, A001055, A001227, A003242, A167606, A342085, A342191.
%K A342096 nonn
%O A342096 1,2
%A A342096 _Gus Wiseman_, Mar 02 2021