This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342097 #11 Jan 29 2022 04:20:25 %S A342097 1,1,1,1,2,1,2,2,3,3,3,3,4,6,6,7,8,8,9,11,13,15,18,20,24,25,29,32,39, %T A342097 42,48,54,63,72,81,89,102,116,132,147,165,187,210,238,264,296,329,371, %U A342097 414,465,516,580,644,722,803,897,994,1108,1229,1367,1512,1678 %N A342097 Number of strict integer partitions of n with no adjacent parts having quotient >= 2. %C A342097 The decapitation of such a partition (delete the greatest part) is term-wise greater than its negated first-differences. %H A342097 Fausto A. C. Cariboni, <a href="/A342097/b342097.txt">Table of n, a(n) for n = 1..400</a> %e A342097 The a(1) = 1 through a(16) = 7 partitions (A..G = 10..16): %e A342097 1 2 3 4 5 6 7 8 9 A B C D E F G %e A342097 32 43 53 54 64 65 75 76 86 87 97 %e A342097 432 532 74 543 85 95 96 A6 %e A342097 643 653 654 754 %e A342097 743 753 853 %e A342097 5432 6432 6532 %e A342097 7432 %t A342097 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Thread[Differences[-#]<Rest[#]]&]],{n,30}] %Y A342097 The case of equality (all adjacent parts having quotient 2) is A154402. %Y A342097 The multiplicative version is A342083 or A342084. %Y A342097 The non-strict version allowing quotients of 2 exactly is A342094. %Y A342097 The version allowing quotients of 2 exactly is A342095. %Y A342097 The non-strict version is A342096. %Y A342097 The reciprocal version is A342098. %Y A342097 A000009 counts strict partitions. %Y A342097 A000929 counts partitions with no adjacent parts having quotient < 2. %Y A342097 A003114 counts partitions with adjacent parts differing by more than 1. %Y A342097 A034296 counts partitions with adjacent parts differing by at most 1. %Y A342097 Cf. A027193, A001055, A001227, A003242, A167606, A337135, A342085. %K A342097 nonn %O A342097 1,5 %A A342097 _Gus Wiseman_, Mar 02 2021