This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342120 #37 Apr 28 2021 02:05:48 %S A342120 1,1,0,1,1,0,1,2,2,0,1,3,6,3,0,1,4,12,16,5,0,1,5,20,45,44,8,0,1,6,30, %T A342120 96,171,120,13,0,1,7,42,175,464,648,328,21,0,1,8,56,288,1025,2240, %U A342120 2457,896,34,0,1,9,72,441,1980,6000,10816,9315,2448,55,0 %N A342120 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - k*x - k*x^2). %H A342120 Seiichi Manyama, <a href="/A342120/b342120.txt">Antidiagonals n = 0..139, flattened</a> %H A342120 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %F A342120 T(0,k) = 1, T(1,k) = k and T(n,k) = k*(T(n-1,k) + T(n-2,k)) for n > 1. %F A342120 T(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n-j,j) = Sum_{j=0..n} k^j * binomial(j,n-j). %F A342120 T(n,k) = (-sqrt(k)*i)^n * S(n, sqrt(k)*i) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind. %e A342120 Square array begins: %e A342120 1, 1, 1, 1, 1, 1, ... %e A342120 0, 1, 2, 3, 4, 5, ... %e A342120 0, 2, 6, 12, 20, 30, ... %e A342120 0, 3, 16, 45, 96, 175, ... %e A342120 0, 5, 44, 171, 464, 1025, ... %e A342120 0, 8, 120, 648, 2240, 6000, ... %p A342120 T:= (n, k)-> (<<0|1>, <k|k>>^(n+1))[1, 2]: %p A342120 seq(seq(T(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Mar 01 2021 %t A342120 T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Apr 28 2021 *) %o A342120 (PARI) T(n, k) = sum(j=0, n\2, k^(n-j)*binomial(n-j, j)); %o A342120 (PARI) T(n, k) = sum(j=0, n, k^j*binomial(j, n-j)); %o A342120 (PARI) T(n, k) = round((-sqrt(k)*I)^n*polchebyshev(n, 2, sqrt(k)*I/2)); %Y A342120 Columns 0..10 give A000007, A000045(n+1), A002605(n+1), A030195(n+1), A057087, A057088, A057089, A057090, A057091, A057092, A057093. %Y A342120 Rows 0..2 give A000012, A001477, A002378. %Y A342120 Main diagonal gives A109516(n+1). %Y A342120 Cf. A342129, A342133, A342134. %K A342120 nonn,tabl %O A342120 0,8 %A A342120 _Seiichi Manyama_, Feb 28 2021