This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342122 #20 Mar 01 2023 08:44:59 %S A342122 0,1,0,1,0,3,0,1,0,5,2,3,11,7,0,1,0,9,6,5,0,13,6,3,19,11,0,7,23,15,0, %T A342122 1,0,17,14,9,4,25,18,5,37,21,10,13,0,29,14,3,35,19,0,11,43,27,4,7,39, %U A342122 23,55,15,47,31,0,1,0,33,30,17,12,49,42,9,0,41,30 %N A342122 a(n) is the remainder when the binary reverse of n is divided by n. %C A342122 The binary reverse of a number is given by A030101. %C A342122 This sequence is the analog of A103168 for the binary base. %H A342122 Rémy Sigrist, <a href="/A342122/b342122.txt">Table of n, a(n) for n = 1..8192</a> %H A342122 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A342122 a(n) = A030101(n) mod n. %F A342122 a(n) < n. %F A342122 a(n) = 0 iff n is a binary palindrome (A006995). %e A342122 For n = 43, %e A342122 - the binary reverse of 43 ("101011" in binary) is 53 ("110101" in binary), %e A342122 - so a(43) = 53 mod 43 = 10. %t A342122 Table[Mod[FromDigits[Reverse[IntegerDigits[n,2]],2],n],{n,80}] (* _Harvey P. Dale_, Mar 01 2023 *) %o A342122 (PARI) a(n, base=2) = { my (r=fromdigits(Vecrev(digits(n, base)), base)); r%n } %o A342122 (Python) %o A342122 def A342122(n): return int(bin(n)[:1:-1],2) % n if n > 0 else 0 # _Chai Wah Wu_, Mar 01 2021 %Y A342122 Cf. A006995, A030101, A103168, A342121, A342123. %K A342122 nonn,base,look,easy %O A342122 1,6 %A A342122 _Rémy Sigrist_, Feb 28 2021