This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342126 #20 Apr 30 2021 17:17:10 %S A342126 0,1,2,3,4,4,6,7,8,8,8,8,12,12,14,15,16,16,16,16,16,16,16,16,24,24,24, %T A342126 24,28,28,30,31,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,48,48, %U A342126 48,48,48,48,48,48,56,56,56,56,60,60,62,63,64,64,64,64 %N A342126 The binary expansion of a(n) corresponds to that of n where all the 1's have been replaced by 0's except in the first run of 1's. %C A342126 In other words, this sequence gives the first run of 1's in the binary expansion of a number. %C A342126 A023758(n) appears A057728(n) times. %H A342126 Rémy Sigrist, <a href="/A342126/b342126.txt">Table of n, a(n) for n = 0..8192</a> %H A342126 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A342126 a(n) = n - A087734(n). %F A342126 a(2*n) = 2*a(n). %F A342126 a(a(n)) = a(n). %F A342126 a(n) <= n with equality iff n belongs to A023758. %e A342126 The first terms, alongside their binary expansion, are: %e A342126 n a(n) bin(n) bin(a(n)) %e A342126 -- ---- ------ --------- %e A342126 0 0 0 0 %e A342126 1 1 1 1 %e A342126 2 2 10 10 %e A342126 3 3 11 11 %e A342126 4 4 100 100 %e A342126 5 4 101 100 %e A342126 6 6 110 110 %e A342126 7 7 111 111 %e A342126 8 8 1000 1000 %e A342126 9 8 1001 1000 %e A342126 10 8 1010 1000 %e A342126 11 8 1011 1000 %e A342126 12 12 1100 1100 %e A342126 13 12 1101 1100 %e A342126 14 14 1110 1110 %e A342126 15 15 1111 1111 %o A342126 (PARI) a(n) = { my (b=binary(n), p=1); for (k=1, #b, b[k] = p*=b[k]); fromdigits(b, 2) } %o A342126 (Python) %o A342126 def A342126(n): %o A342126 s = bin(n)[2:] %o A342126 i = s.find('0') %o A342126 return n if i == -1 else (2**i-1)*2**(len(s)-i) # _Chai Wah Wu_, Apr 29 2021 %Y A342126 Cf. A023758, A057728, A087734, A090996, A342410. %K A342126 nonn,base,easy %O A342126 0,3 %A A342126 _Rémy Sigrist_, Apr 25 2021