This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342127 #43 Apr 20 2024 11:27:52 %S A342127 0,1,5,6,10,47,50,60,75,78,100,125,152,457,500,600,750,1000,1025,1052, %T A342127 1250,1520,5000,5625,6000,7500,10000,10025,10052,10250,10520,12266, %U A342127 12500,15200,23258,43567,50000,56250,60000,62656,75000,82291,90625,98254,100000,100025,100052,100250,100520 %N A342127 Numbers m such that the product of m and the string m in reverse contains m as a substring. %C A342127 Numerous patterns exist in the terms, e.g., all numbers of the form 1*10^k, 5*10^k, 6*10^k, 75*10^k, 10^(k+2)+25, where k>=0, are in the sequence. %H A342127 Robert Israel, <a href="/A342127/b342127.txt">Table of n, a(n) for n = 1..153</a> %e A342127 6 is a term as 6*reverse(6) = 6*6 = 36 contains '6' as a substring. %e A342127 47 is a term as 47*reverse(47) = 47*74 = 3478 contains '47' as a substring. %e A342127 1052 is a term as 1052*reverse(1052) = 1052*2501 = 2631052 contains '1052' as a substring. %p A342127 filter:= proc(n) local L,d,Lp,r,i; %p A342127 L:= convert(n,base,10); %p A342127 d:= nops(L); %p A342127 r:= add(L[-i]*10^(i-1),i=1..d); %p A342127 Lp:= convert(n*r,base,10); %p A342127 ormap(t -> Lp[t..t+d-1] = L, [$1..nops(Lp)+1-d]) %p A342127 end proc: %p A342127 select(filter, [$0..120000]); # _Robert Israel_, Mar 24 2024 %t A342127 Select[Range[0,110000],SequenceCount[IntegerDigits[# IntegerReverse[#]],IntegerDigits[#]]>0&] (* _Harvey P. Dale_, Apr 20 2024 *) %o A342127 (PARI) isok(m) = #strsplit(Str(m*fromdigits(Vecrev(digits(m)))), Str(m)) > 1; \\ _Michel Marcus_, Mar 01 2021 %o A342127 (Python) %o A342127 def ok(n): return (s:=str(n)) in str(n*int(s[::-1])) %o A342127 print([k for k in range(10**6) if ok(k)]) # _Michael S. Branicky_, Mar 25 2024 %Y A342127 Cf. A061205, A342130 (base 2), A001477, A004086, A181721, A203565, A332795. %K A342127 nonn,base %O A342127 1,3 %A A342127 _Scott R. Shannon_, Mar 01 2021