This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342163 #25 Jun 25 2022 11:13:38 %S A342163 2,6,15,29,60,87,137,176,247,360,422,568,689,776,923,1136,1369,1494, %T A342163 1764,1978,2128,2451,2710,3074,3562,3870,4077,4411,4638,4995,6026, %U A342163 6426,6987,7271,8180,8493,9134,9802,10319,11030,11767,12139,13314,13712,14329,14742 %N A342163 a(n) is the number of numbers greater than 1 and up to prime(n)^2 whose prime factors are all less than or equal to prime(n). %H A342163 Robert Israel, <a href="/A342163/b342163.txt">Table of n, a(n) for n = 1..4000</a> %F A342163 a(n) = A184677(n) - 1. %e A342163 For n=3, prime(3) = 5. Then the numbers up to 5^2 = 25 that have prime factors <= 5 are 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25. So a(3) = 15. %p A342163 A[1]:= 2: p:= 2: P:= 1: %p A342163 f:= proc(n) local x,y; %p A342163 x:= n; %p A342163 do %p A342163 y:= igcd(x,P); %p A342163 x:= x/y; %p A342163 if x = 1 then return true fi; %p A342163 if y = 1 then return false fi %p A342163 od; %p A342163 end proc: %p A342163 for nn from 2 to 100 do %p A342163 q:= p; p:= nextprime(p); P:= P*q; %p A342163 A[nn]:= A[nn-1] + p + numboccur(true,map(f, [$q^2+1 .. p^2-1])) %p A342163 od: %p A342163 seq(A[i],i=1..100); # _Robert Israel_, Apr 06 2021 %t A342163 Block[{nn = 46, w}, w = Array[FactorInteger[#][[All, 1]] &, Prime[nn]^2]; Table[-1 + Count[w[[1 ;; p^2]], _?(AllTrue[#, # <= p &] &)], {p, Prime@ Range@ nn}]] (* _Michael De Vlieger_, Mar 13 2021 *) %o A342163 (PARI) forprime(n = 2, prime(35), i = 0; for(k = 2, n^2, v = factor(k)~[1,]; if(vecmax(v) <= n, i++)); print1(i", ")) %o A342163 (PARI) a(n) = my(p=prime(n)); sum(k=2, p^2, vecmax(factor(k)[,1]) <= p); \\ _Michel Marcus_, Mar 03 2021 %Y A342163 Cf. A000040, A001248, A184677. %K A342163 nonn %O A342163 1,1 %A A342163 _Dimitris Valianatos_, Mar 03 2021 %E A342163 Definition clarified by _Robert Israel_, Apr 06 2021