This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342181 #14 Feb 16 2025 08:34:01 %S A342181 1,1,2,14,588,252252,1875745872,409565359659456, %T A342181 4443872618422784042496,4052080633200943761869999708160, %U A342181 524883317743439723147432404145717855232000,16321637725818077271987866314412476606229589461376000000 %N A342181 Product of first n Robbins numbers. %H A342181 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AlternatingSignMatrix.html">Alternating Sign Matrix</a>. %H A342181 Wikipedia, <a href="https://en.wikipedia.org/wiki/Barnes_G-function">Barnes G-function</a>. %F A342181 a(n) = Product_{k=1..n} A005130(k). %F A342181 a(n) ~ Pi^(n/3 + 1/6) * 3^(n^3/2 + 3*n^2/4 + n/18 - 13/216) * exp(n/6 + 11*zeta(3)/(144*Pi^2) + 19/216) / (BarnesG(1/3)^(2/3) * n^(5*n/36 + 5/72) * 2^(2*n^3/3 + n^2 - n/12 - 1/12) * A^(n/3 + 19/18) * Gamma(1/3)^(2*n/3 + 7/9)), where A is the Glaisher-Kinkelin constant A074962. %p A342181 b:= proc(n) option remember; `if`(n<2, 1, b(n-1)* %p A342181 (n-1)!*(3*n-2)!/((2*n-2)!*(2*n-1)!)) %p A342181 end: %p A342181 a:= proc(n) a(n):=`if`(n=0, 1, a(n-1)*b(n)) end: %p A342181 seq(a(n), n=0..12); # _Alois P. Heinz_, Mar 04 2021 %t A342181 Table[Product[Product[(3*j + 1)!/(k + j)!, {j, 0, k-1}], {k,1,n}], {n,0,12}] %t A342181 FoldList[Times, 1, Table[Product[(3*j + 1)!/(n + j)!, {j, 0, n - 1}], {n, 1, 12}]] %Y A342181 Cf. A005130. %K A342181 nonn %O A342181 0,3 %A A342181 _Vaclav Kotesovec_, Mar 04 2021