This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342192 #7 Apr 05 2021 09:19:03 %S A342192 6,10,14,22,26,34,38,46,58,62,74,82,86,94,100,106,118,122,134,140,142, %T A342192 146,158,166,178,194,196,202,206,214,218,220,226,254,260,262,274,278, %U A342192 298,300,302,308,314,326,334,340,346,358,362,364,380,382,386,394,398 %N A342192 Heinz numbers of partitions of crank 0. %C A342192 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A342192 See A257989 or the program for a definition of crank of a partition. %e A342192 The sequence of terms together with their prime indices begins: %e A342192 6: {1,2} 106: {1,16} 218: {1,29} %e A342192 10: {1,3} 118: {1,17} 220: {1,1,3,5} %e A342192 14: {1,4} 122: {1,18} 226: {1,30} %e A342192 22: {1,5} 134: {1,19} 254: {1,31} %e A342192 26: {1,6} 140: {1,1,3,4} 260: {1,1,3,6} %e A342192 34: {1,7} 142: {1,20} 262: {1,32} %e A342192 38: {1,8} 146: {1,21} 274: {1,33} %e A342192 46: {1,9} 158: {1,22} 278: {1,34} %e A342192 58: {1,10} 166: {1,23} 298: {1,35} %e A342192 62: {1,11} 178: {1,24} 300: {1,1,2,3,3} %e A342192 74: {1,12} 194: {1,25} 302: {1,36} %e A342192 82: {1,13} 196: {1,1,4,4} 308: {1,1,4,5} %e A342192 86: {1,14} 202: {1,26} 314: {1,37} %e A342192 94: {1,15} 206: {1,27} 326: {1,38} %e A342192 100: {1,1,3,3} 214: {1,28} 334: {1,39} %t A342192 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A342192 ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]]; %t A342192 Select[Range[100],ck[primeMS[#]]==0&] %Y A342192 Indices of zeros in A257989. %Y A342192 A000005 counts constant partitions. %Y A342192 A000041 counts partitions (strict: A000009). %Y A342192 A001522 counts partitions of positive crank. %Y A342192 A003242 counts anti-run compositions. %Y A342192 A064391 counts partitions by crank. %Y A342192 A064428 counts partitions of nonnegative crank. %Y A342192 A224958 counts compositions with alternating parts unequal. %Y A342192 A257989 gives the crank of the partition with Heinz number n. %Y A342192 Cf. A000726, A008965, A056239, A112798, A124010, A130091, A325351, A325352. %K A342192 nonn %O A342192 1,1 %A A342192 _Gus Wiseman_, Apr 05 2021