A342193 Numbers with no prime index dividing all the other prime indices.
1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 195, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 105: {2,3,4} 201: {2,19} 15: {2,3} 119: {4,7} 203: {4,10} 33: {2,5} 123: {2,13} 205: {3,13} 35: {3,4} 135: {2,2,2,3} 207: {2,2,9} 45: {2,2,3} 141: {2,15} 209: {5,8} 51: {2,7} 143: {5,6} 215: {3,14} 55: {3,5} 145: {3,10} 217: {4,11} 69: {2,9} 153: {2,2,7} 219: {2,21} 75: {2,3,3} 155: {3,11} 221: {6,7} 77: {4,5} 161: {4,9} 225: {2,2,3,3} 85: {3,7} 165: {2,3,5} 231: {2,4,5} 91: {4,6} 175: {3,3,4} 245: {3,4,4} 93: {2,11} 177: {2,17} 247: {6,8} 95: {3,8} 187: {5,7} 249: {2,23} 99: {2,2,5} 195: {2,3,6} 253: {5,9}
Crossrefs
The case with maximum prime index not divisible by all others is A343338.
The case with maximum prime index divisible by all others is A343339.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A001221 counts distinct prime factors.
A299702 lists Heinz numbers of knapsack partitions.
A339564 counts factorizations with a selected factor.
Programs
-
Mathematica
Select[Range[100],#==1||With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(p/Min@@p)]&]
Comments