This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342194 #7 Apr 02 2021 08:35:38 %S A342194 1,1,1,3,3,5,7,7,7,13,11,11,17,13,15,25,17,17,29,19,23,35,25,23,39,29, %T A342194 29,45,33,29,55,31,35,55,39,43,65,37,43,65,51,41,77,43,51,85,53,47,85, %U A342194 53,65,87,61,53,99,67,67,97,67,59,119,61,71,113,75,79,123,67,79,117 %N A342194 Number of strict compositions of n with equal differences, or strict arithmetic progressions summing to n. %H A342194 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression</a>. %H A342194 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts</a>. %F A342194 a(n > 0) = A175342(n) - A000005(n) + 1. %F A342194 a(n > 0) = 2*A049988(n) - 2*A000005(n) + 1 = 2*A049982(n) + 1. %e A342194 The a(1) = 1 through a(9) = 13 compositions: %e A342194 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A342194 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) %e A342194 (2,1) (3,1) (2,3) (2,4) (2,5) (2,6) (2,7) %e A342194 (3,2) (4,2) (3,4) (3,5) (3,6) %e A342194 (4,1) (5,1) (4,3) (5,3) (4,5) %e A342194 (1,2,3) (5,2) (6,2) (5,4) %e A342194 (3,2,1) (6,1) (7,1) (6,3) %e A342194 (7,2) %e A342194 (8,1) %e A342194 (1,3,5) %e A342194 (2,3,4) %e A342194 (4,3,2) %e A342194 (5,3,1) %t A342194 Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],SameQ@@Differences[#]&]],{n,0,30}] %Y A342194 Strict compositions in general are counted by A032020. %Y A342194 The unordered version is A049980. %Y A342194 The non-strict version is A175342. %Y A342194 A000203 adds up divisors. %Y A342194 A000726 counts partitions with alternating parts unequal. %Y A342194 A003242 counts anti-run compositions. %Y A342194 A224958 counts compositions with alternating parts unequal. %Y A342194 A342343 counts compositions with alternating parts strictly decreasing. %Y A342194 A342495 counts compositions with constant quotients. %Y A342194 A342527 counts compositions with alternating parts equal. %Y A342194 Cf. A000009, A001522, A002843, A049988, A062968, A070211, A114921, A325545, A325557, A342496, A342515, A342522. %K A342194 nonn %O A342194 0,4 %A A342194 _Gus Wiseman_, Apr 02 2021