This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342206 #23 Mar 12 2024 09:38:17 %S A342206 1,3,31,485,10081,262087,8193151,299537289,12545596801,592479412811, %T A342206 31154649926687,1805486216133613,114342125644787041, %U A342206 7857107443850071695,582268591681887560191,46292552162781456490001,3930448770533424343942657 %N A342206 a(n) = T(n,n+2) where T(n,x) is a Chebyshev polynomial of the first kind. %H A342206 Seiichi Manyama, <a href="/A342206/b342206.txt">Table of n, a(n) for n = 0..351</a> %H A342206 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>. %F A342206 a(n) = cos(n*arccos(n+2)). %F A342206 a(n) = n * Sum_{k=0..n} (2*n+2)^k * binomial(n+k,2*k)/(n+k) for n > 0. %F A342206 a(n) ~ exp(2) * 2^(n-1) * n^n. - _Vaclav Kotesovec_, Mar 12 2024 %t A342206 Table[ChebyshevT[n, n + 2], {n, 0, 16}] (* _Amiram Eldar_, Mar 05 2021 *) %o A342206 (PARI) a(n) = polchebyshev(n, 1, n+2); %o A342206 (PARI) a(n) = round(cos(n*acos(n+2))); %o A342206 (PARI) a(n) = if(n==0, 1, n*sum(k=0, n, (2*n+2)^k*binomial(n+k, 2*k)/(n+k))); %Y A342206 Cf. A107995, A115066, A323117, A342205. %K A342206 nonn %O A342206 0,2 %A A342206 _Seiichi Manyama_, Mar 05 2021