This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342207 #22 Mar 06 2021 01:46:45 %S A342207 1,4,35,496,9701,241956,7338631,262184896,10783446409,501827040100, %T A342207 26069206375211,1495427735314800,93885489910449901, %U A342207 6403169506981578436,471427031236487965199,37265225545829174607616,3147895910861898495432209 %N A342207 a(n) = U(n,n+1) where U(n,x) is a Chebyshev polynomial of the second kind. %H A342207 Seiichi Manyama, <a href="/A342207/b342207.txt">Table of n, a(n) for n = 0..351</a> %H A342207 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>. %F A342207 a(n) = Sum_{k=0..n} (2*n)^(n-k) * binomial(2*n+1-k,k) = Sum_{k=0..n} (2*n)^k * binomial(n+1+k,2*k+1). %F A342207 a(n) ~ exp(1) * 2^n * n^n. - _Vaclav Kotesovec_, Mar 05 2021 %t A342207 Table[ChebyshevU[n, n + 1], {n, 0, 16}] (* _Amiram Eldar_, Mar 05 2021 *) %o A342207 (PARI) a(n) = polchebyshev(n, 2, n+1); %o A342207 (PARI) a(n) = sum(k=0, n, (2*n)^(n-k)*binomial(2*n+1-k, k)); %o A342207 (PARI) a(n) = sum(k=0, n, (2*n)^k*binomial(n+1+k, 2*k+1)); %Y A342207 Cf. A107995, A323118, A342168, A342205. %K A342207 nonn %O A342207 0,2 %A A342207 _Seiichi Manyama_, Mar 05 2021