This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342228 #5 Mar 07 2021 03:55:55 %S A342228 0,1,2,4,11,16,27,42,69,108,158,229,334,469,656,903,1255,1685,2283, %T A342228 3032,4033,5290,6936,8986,11650,14969,19172,24402,30998,39110,49260, %U A342228 61712,77155,96000,119209,147394,181958,223713,274533,335792,409980,498981,606273,734572 %N A342228 Total sum of parts which are squares in all partitions of n. %F A342228 G.f.: Sum_{k>=1} k^2*x^(k^2)/(1 - x^(k^2)) / Product_{j>=1} (1 - x^j). %F A342228 a(n) = Sum_{k=1..n} A035316(k) * A000041(n-k). %e A342228 For n = 4 we have: %e A342228 --------------------------------- %e A342228 Partitions Sum of parts %e A342228 . which are squares %e A342228 --------------------------------- %e A342228 4 ................... 4 %e A342228 3 + 1 ............... 1 %e A342228 2 + 2 ............... 0 %e A342228 2 + 1 + 1 ........... 2 %e A342228 1 + 1 + 1 + 1 ....... 4 %e A342228 --------------------------------- %e A342228 Total .............. 11 %e A342228 So a(4) = 11. %t A342228 nmax = 43; CoefficientList[Series[Sum[k^2 x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[nmax^(1/2)] + 1}]/Product[(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x] %t A342228 Table[Sum[DivisorSum[k, # &, IntegerQ[#^(1/2)] &] PartitionsP[n - k], {k, 1, n}], {n, 0, 43}] %Y A342228 Cf. A000041, A000290, A035316, A066186, A073336, A342229. %K A342228 nonn %O A342228 0,3 %A A342228 _Ilya Gutkovskiy_, Mar 06 2021