cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342228 Total sum of parts which are squares in all partitions of n.

This page as a plain text file.
%I A342228 #5 Mar 07 2021 03:55:55
%S A342228 0,1,2,4,11,16,27,42,69,108,158,229,334,469,656,903,1255,1685,2283,
%T A342228 3032,4033,5290,6936,8986,11650,14969,19172,24402,30998,39110,49260,
%U A342228 61712,77155,96000,119209,147394,181958,223713,274533,335792,409980,498981,606273,734572
%N A342228 Total sum of parts which are squares in all partitions of n.
%F A342228 G.f.: Sum_{k>=1} k^2*x^(k^2)/(1 - x^(k^2)) / Product_{j>=1} (1 - x^j).
%F A342228 a(n) = Sum_{k=1..n} A035316(k) * A000041(n-k).
%e A342228 For n = 4 we have:
%e A342228 ---------------------------------
%e A342228 Partitions        Sum of parts
%e A342228 .              which are squares
%e A342228 ---------------------------------
%e A342228 4 ................... 4
%e A342228 3 + 1 ............... 1
%e A342228 2 + 2 ............... 0
%e A342228 2 + 1 + 1 ........... 2
%e A342228 1 + 1 + 1 + 1 ....... 4
%e A342228 ---------------------------------
%e A342228 Total .............. 11
%e A342228 So a(4) = 11.
%t A342228 nmax = 43; CoefficientList[Series[Sum[k^2 x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[nmax^(1/2)] + 1}]/Product[(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x]
%t A342228 Table[Sum[DivisorSum[k, # &, IntegerQ[#^(1/2)] &] PartitionsP[n - k], {k, 1, n}], {n, 0, 43}]
%Y A342228 Cf. A000041, A000290, A035316, A066186, A073336, A342229.
%K A342228 nonn
%O A342228 0,3
%A A342228 _Ilya Gutkovskiy_, Mar 06 2021