cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342229 Total sum of parts which are cubes in all partitions of n.

This page as a plain text file.
%I A342229 #4 Mar 07 2021 03:56:01
%S A342229 0,1,2,4,7,12,19,30,53,75,113,163,235,328,461,628,868,1163,1564,2069,
%T A342229 2743,3578,4674,6036,7795,9962,12728,16151,20441,25714,32290,40332,
%U A342229 50292,62405,77288,95339,117382,143987,176298,215168,262121,318385,386043,466838,563577,678712
%N A342229 Total sum of parts which are cubes in all partitions of n.
%F A342229 G.f.: Sum_{k>=1} k^3*x^(k^3)/(1 - x^(k^3)) / Product_{j>=1} (1 - x^j).
%F A342229 a(n) = Sum_{k=1..n} A113061(k) * A000041(n-k).
%e A342229 For n = 4 we have:
%e A342229 --------------------------------
%e A342229 Partitions        Sum of parts
%e A342229 .               which are cubes
%e A342229 --------------------------------
%e A342229 4 ................... 0
%e A342229 3 + 1 ............... 1
%e A342229 2 + 2 ............... 0
%e A342229 2 + 1 + 1 ........... 2
%e A342229 1 + 1 + 1 + 1 ....... 4
%e A342229 --------------------------------
%e A342229 Total ............... 7
%e A342229 So a(4) = 7.
%t A342229 nmax = 45; CoefficientList[Series[Sum[k^3 x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}]/Product[(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x]
%t A342229 Table[Sum[DivisorSum[k, # &, IntegerQ[#^(1/3)] &] PartitionsP[n - k], {k, 1, n}], {n, 0, 45}]
%Y A342229 Cf. A000041, A000578, A066186, A113061, A264392, A342228.
%K A342229 nonn
%O A342229 0,3
%A A342229 _Ilya Gutkovskiy_, Mar 06 2021