This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342229 #4 Mar 07 2021 03:56:01 %S A342229 0,1,2,4,7,12,19,30,53,75,113,163,235,328,461,628,868,1163,1564,2069, %T A342229 2743,3578,4674,6036,7795,9962,12728,16151,20441,25714,32290,40332, %U A342229 50292,62405,77288,95339,117382,143987,176298,215168,262121,318385,386043,466838,563577,678712 %N A342229 Total sum of parts which are cubes in all partitions of n. %F A342229 G.f.: Sum_{k>=1} k^3*x^(k^3)/(1 - x^(k^3)) / Product_{j>=1} (1 - x^j). %F A342229 a(n) = Sum_{k=1..n} A113061(k) * A000041(n-k). %e A342229 For n = 4 we have: %e A342229 -------------------------------- %e A342229 Partitions Sum of parts %e A342229 . which are cubes %e A342229 -------------------------------- %e A342229 4 ................... 0 %e A342229 3 + 1 ............... 1 %e A342229 2 + 2 ............... 0 %e A342229 2 + 1 + 1 ........... 2 %e A342229 1 + 1 + 1 + 1 ....... 4 %e A342229 -------------------------------- %e A342229 Total ............... 7 %e A342229 So a(4) = 7. %t A342229 nmax = 45; CoefficientList[Series[Sum[k^3 x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}]/Product[(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x] %t A342229 Table[Sum[DivisorSum[k, # &, IntegerQ[#^(1/3)] &] PartitionsP[n - k], {k, 1, n}], {n, 0, 45}] %Y A342229 Cf. A000041, A000578, A066186, A113061, A264392, A342228. %K A342229 nonn %O A342229 0,3 %A A342229 _Ilya Gutkovskiy_, Mar 06 2021