A342238 Table read by upward antidiagonals: T(n,k) is the number of strings of length k over an n-letter alphabet that do not begin with a palindrome of two or more letters; n, k >= 1.
1, 2, 0, 3, 2, 0, 4, 6, 2, 0, 5, 12, 12, 2, 0, 6, 20, 36, 30, 2, 0, 7, 30, 80, 132, 78, 2, 0, 8, 42, 150, 380, 492, 222, 2, 0, 9, 56, 252, 870, 1820, 1932, 636, 2, 0, 10, 72, 392, 1722, 5070, 9020, 7596, 1878, 2, 0, 11, 90, 576, 3080, 11802, 30270, 44720, 30252, 5556, 2, 0
Offset: 1
Examples
Table begins: n\k | 1 2 3 4 5 6 7 8 ----+-------------------------------------------- 1 | 1 0 0 0 0 0 0 0 2 | 2 2 2 2 2 2 2 2 3 | 3 6 12 30 78 222 636 1878 4 | 4 12 36 132 492 1932 7596 30252 5 | 5 20 80 380 1820 9020 44720 223220 6 | 6 30 150 870 5070 30270 180750 1083630 7 | 7 42 252 1722 11802 82362 574812 4021962 8 | 8 56 392 3080 24248 193592 1545656 12362168
Links
- Peter Kagey, Antidiagonals n = 1..100, flattened
Crossrefs
Formula
T(n,k) = n^k - A342237(n,k).