A342241 a(n) is the least k > 0 such that the first k bits and the last k bits in the binary expansion of n are the same.
1, 1, 2, 1, 3, 1, 3, 1, 4, 1, 2, 1, 4, 1, 4, 1, 5, 1, 2, 1, 5, 1, 2, 1, 5, 1, 5, 1, 5, 1, 5, 1, 6, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 6, 1, 6, 1, 6, 1, 3, 1, 6, 1, 6, 1, 6, 1, 6, 1, 7, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 7, 1, 2
Offset: 0
Examples
For n = 42: - the binary representation of 42 is "101010", - the first bit ("1") and the last bit ("0") do not match, - the first 2 bits ("10") and the last 2 bits ("10") match, - so a(42) = 2.
Links
Programs
-
PARI
a(n) = { my (b=if (n, binary(n), [0])); for (w=1, oo, if (b[1..w]==b[#b+1-w..#b], return (w))) }
-
Python
def a(n): b = bin(n)[2:] for i in range(1, len(b)+1): if b[:i] == b[-i:]: return i print([a(n) for n in range(87)]) # Michael S. Branicky, Mar 07 2021
Comments