cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342244 Primes whose binary representation is not the concatenation of the binary representations of smaller primes (allowing leading 0's).

This page as a plain text file.
%I A342244 #31 May 22 2024 17:27:30
%S A342244 2,3,5,7,13,17,41,73,89,97,137,193,257,281,313,409,449,521,569,577,
%T A342244 617,641,673,761,769,929,953,1033,1049,1153,1249,1289,1409,1601,1657,
%U A342244 1697,1721,1801,1913,2081,2113,2153,2297,2441,2593,2713,3137,3257,3361,3449
%N A342244 Primes whose binary representation is not the concatenation of the binary representations of smaller primes (allowing leading 0's).
%C A342244 Similar to A090422, but allowing leading zeros in the representation of any prime. For example, 19 in base 2 is 10011, which can be written as (10)(011), and so does not appear in this sequence (but does appear in A090422).
%C A342244 Empirically, a(n) == 1 (mod 8) after starting at a(6)=17. - _Hugo Pfoertner_, Mar 06 2021
%C A342244 This observation follows from the fact that the regular expression (0*10+0*11+0*101+0*111+0*1011+0*1101)* corresponding to the first 6 primes has a complement that only includes 1, 01, some words that end in 0, and some words that end in 001. - _Jeffrey Shallit_, Mar 07 2021
%H A342244 Robert Israel, <a href="/A342244/b342244.txt">Table of n, a(n) for n = 1..10000</a>
%p A342244 CSP:= proc(n)  option remember; local g;
%p A342244    g:= proc(k) local v; v:= n mod 2^k; isprime(floor(n/2^k)) and (isprime(v) or CSP(v)) end proc;
%p A342244    ormap(g, [$2..ilog2(n)])
%p A342244 end proc:
%p A342244 CSP(0):= false:
%p A342244 remove(CSP, [seq(ithprime(i),i=1..1000)]); # _Robert Israel_, May 22 2024
%o A342244 (Python)
%o A342244 from sympy import isprime, primerange
%o A342244 def ok(p):
%o A342244   b = bin(p)[2:]
%o A342244   for i in range(2, len(b)-1):
%o A342244     if isprime(int(b[:i], 2)):
%o A342244       if isprime(int(b[i:], 2)) or not ok(int(b[i:], 2)): return False
%o A342244   return True
%o A342244 def aupto(lim): return [p for p in primerange(2, lim+1) if ok(p)]
%o A342244 print(aupto(3449)) # _Michael S. Branicky_, Mar 07 2021
%Y A342244 Cf. A090422.
%K A342244 nonn,base
%O A342244 1,1
%A A342244 _Jeffrey Shallit_, Mar 07 2021