This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342245 #13 Jun 20 2025 16:31:32 %S A342245 1,3,21,339,12483,1074339,219474243,107174166147,126918737362179, %T A342245 367662330459585027,2614066808849501254659,45985259502347910886975491, %U A342245 2009925824909891218929491103747,218411680908756813835229484489351171,59296916710446845619466630380450779971587 %N A342245 Number of ordered pairs (S,T) of n X n idempotent matrices over GF(2) such that ST = TS = S. %C A342245 The components in the ordered pairs are not necessarily distinct. %C A342245 The relation S<=T iff ST=TS=S gives a partial ordering on the idempotent matrices enumerated in A132186. Each length k chain (from bottom to top) in the poset corresponds to an ordered direct sum decomposition of GF(2)^n into exactly k subspaces. %F A342245 Let E(x) = Sum_{n>=0} x^n/(2^binomial(n,2) * [n]_2!) where [n]_2! = A005329(n). Then E(x)^3 = Sum_{n>=0} a(n)x^n/(2^binomial(n,2) * [n]_2!) %t A342245 nn = 13; b[n_] := q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]] /. q -> 2; %t A342245 e[x_] := Sum[x^n/b[n], {n, 0,nn}];Table[b[n],{n,0,nn}]CoefficientList[Series[e[x]^3, {x, 0, nn}], x] %Y A342245 Cf. A132186, A005329. %K A342245 nonn %O A342245 0,2 %A A342245 _Geoffrey Critzer_, Mar 07 2021