This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342246 #27 Jul 30 2024 11:55:12 %S A342246 11151,13455,23375,26271,31311,33776,36125,40375,45495,46375,48411, %T A342246 49049,49167,61335,63125,74151,77895,78111,78351,80271,82575,83511, %U A342246 84591,86031,87375,88749,90207 %N A342246 Numbers k such that k-1, k and k+1 are all composite with four, five and six (not necessarily distinct) prime factors respectively. %H A342246 Dumitru Damian, <a href="/A342246/b342246.txt">Table of n, a(n) for n = 1..10456</a> %e A342246 For k=11151 we have 11150 = 2 * 5^2 * 223 which is composite with four prime factors, 11151 = 3^3 * 7 * 59 which is composite with five prime factors and 11152 = 2^4 * 17 * 41 which is composite with six prime factors. %t A342246 SequencePosition[PrimeOmega[Range[100000]],{4,5,6}][[;;,1]]+1 (* _Harvey P. Dale_, Jul 30 2024 *) %o A342246 (Sage) %o A342246 # The following SageMath algorithm will generate all terms up to 100000 %o A342246 L=[] %o A342246 for n in [1..100000]: %o A342246 sum1, sum2, sum3 = 0,0,0 %o A342246 for f in list(factor(n)): %o A342246 sum1+=f[1] %o A342246 for f in list(factor(n+1)): %o A342246 sum2+=f[1] %o A342246 for f in list(factor(n+2)): %o A342246 sum3+=f[1] %o A342246 if sum1==4 and sum2==5: %o A342246 if sum3==6: %o A342246 L.append(n+1) %o A342246 print(L) %o A342246 (PARI) for(n=3,100000,if(bigomega(n-1)==4&&bigomega(n)==5&&bigomega(n+1)==6,print1(n,", "))) \\ _Hugo Pfoertner_, Mar 07 2021 %Y A342246 Subsequence of A342258. %Y A342246 Cf. A001222, A014613, A014614, A046306. %K A342246 nonn %O A342246 1,1 %A A342246 _Sean Lestrange_, Mar 07 2021