cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342263 a(n) is the length of the longest substring appearing twice (possibly with overlap) in the binary expansion of n.

This page as a plain text file.
%I A342263 #12 Mar 11 2021 11:41:19
%S A342263 0,0,0,1,1,1,1,2,2,1,2,1,1,1,2,3,3,2,2,1,2,3,2,2,2,1,2,2,2,2,3,4,4,3,
%T A342263 2,2,3,2,2,2,2,2,4,3,2,3,2,3,3,2,2,2,2,3,3,2,2,2,2,2,3,3,4,5,5,4,3,3,
%U A342263 3,2,2,2,3,4,3,2,3,2,2,3,3,2,3,2,4,5,3
%N A342263 a(n) is the length of the longest substring appearing twice (possibly with overlap) in the binary expansion of n.
%C A342263 We ignore leading zeros, but the duplicate substrings can have leading zeros.
%C A342263 This sequence diverges (for any k > 0, a number n with k*(2^k+1) or more binary digits has necessarily a length-k repeated substring in its binary expansion, so a(n) >= k).
%H A342263 Rémy Sigrist, <a href="/A342263/b342263.txt">Table of n, a(n) for n = 0..8192</a>
%H A342263 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A342263 a(n) < A070939(n).
%F A342263 a(2^k) = a(2^k-1) = k-1 for any k > 0.
%e A342263 The first terms, alongside the binary expansion of n and the corresponding longest repeated substrings, are:
%e A342263   n   a(n)  bin(n)  longest duplicate substrings
%e A342263   --  ----  ------  ----------------------------
%e A342263    0     0       0  ""
%e A342263    1     0       1  ""
%e A342263    2     0      10  ""
%e A342263    3     1      11  "1"
%e A342263    4     1     100  "0"
%e A342263    5     1     101  "1"
%e A342263    6     1     110  "1"
%e A342263    7     2     111  "11"
%e A342263    8     2    1000  "00"
%e A342263    9     1    1001  "0", "1"
%e A342263   10     2    1010  "10"
%e A342263   11     1    1011  "1"
%e A342263   12     1    1100  "0", "1"
%e A342263   13     1    1101  "1"
%e A342263   14     2    1110  "11"
%e A342263   15     3    1111  "111"
%o A342263 (PARI) a(n) = { my (b=if (n, binary(n), [0])); for (w=1, oo, my (s=vector(#b+1-w, o, b[o..o+w-1])); if (#s==#Set(s), return (w-1))) }
%o A342263 (Python)
%o A342263 def a(n):
%o A342263   b = bin(n)[2:]
%o A342263   for k in range(len(b), -1, -1):
%o A342263     for i in range(len(b)-k):
%o A342263       for j in range(i+1, len(b)-k+1):
%o A342263         if b[i:i+k] == b[j:j+k]: return k
%o A342263 print([a(n) for n in range(87)]) # _Michael S. Branicky_, Mar 07 2021
%Y A342263 Cf. A070939, A342298.
%K A342263 nonn,base
%O A342263 0,8
%A A342263 _Rémy Sigrist_, Mar 07 2021