A342305
Number of nonisomorphic rings Z/nZ/(x^2 - A, y^2 - B, y*x - a - b*x - c*y - d*x*y) of order n^4.
1, 3, 13, 97, 14, 39, 15, 624, 67, 42, 17, 1261, 18, 45, 182
Offset: 1
Examples
For n=2: Z/2Z<x,y>/(x^2, y^2, y*x), Z/2Z<x,y>/(x^2, y^2, y*x + x*y), Z/2Z<x,y>/(x^2, y^2, y*x + 1 + x*y), so a(2)=3. For n=3, a complete family of non-isomorphic cases {A,B,a,b,c,d} are: {0,0,0,0,0,0}, {0,0,0,0,0,1}, {0,0,0,0,0,2}, {0,0,1,0,0,2}, {0,1,0,0,0,1}, {0,1,0,0,0,2}, {0,1,0,1,0,0}, {0,2,0,0,0,1}, {0,2,0,0,0,2}, {1,0,0,0,1,0}, {1,1,0,0,0,1}, {1,1,1,1,2,0}, {1,2,0,0,0,1}, so a(3)=13.
Links
- José María Grau Ribas, A complete family of non-isomorphic rings of the type Zn(A,B,a,b,c,d)
- José María Grau Ribas, Mathematica code
- José María Grau Ribas, Antonio M. Oller-Marcén, and Steve Szabo, Minimal rings related to generalized quaternion rings, Int'l Electronic J. Algebra (2023).
Crossrefs
Programs
-
Mathematica
a[1]=1; a[p_,1]:= (12 + (p - 1)/2); a[2, 1]=3; a[2,2]= 97; a[2,3]=624; a[3, 2]=67; a[n_]:=Module[{aux=FactorInteger[n]},Product[a[aux[[i,1]], aux[[i,2]]], {i, Length[aux]}]]; Table[a[n], {n, 1, 15}]