This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342307 #15 Mar 18 2021 07:11:36 %S A342307 126,936,2520,3780,41184,25200,11160,287280,1029600,151200,27090, %T A342307 1294560,12927600,18532800,529200,57456,4442760,90619200,439538400, %U A342307 259459200,846720,110376,12640320,444276000,4893436800,12307075200,2905943040,0,196560,31346784,1706443200,34653528000,222651374400,295369804800,26153487360,0 %N A342307 Table read by ascending antidiagonals: T(n, k) is the maximum number of quasi k-gons that are not k-gons in a finite projective plane of order n, with k >= 3. %H A342307 Vladislav Taranchuk, <a href="https://cpb-us-w2.wpmucdn.com/sites.udel.edu/dist/b/8131/files/2020/12/K_gons_12_7_2020-1.pdf">On the number of k-gons in finite projective planes</a>, (2020). %F A342307 T(n, k) = k!*binomial(k - 1, 2)*binomial(n^2 + n + 1, k - 1)*(n - 1). %e A342307 n\k | 3 4 5 6 %e A342307 ----+------------------------------------- %e A342307 2 | 126 2520 25200 151200 ... %e A342307 3 | 936 41184 1029600 18532800 ... %e A342307 4 | 3780 287280 12927600 439538400 ... %e A342307 5 | 11160 1294560 90619200 4893436800 ... %e A342307 ... %t A342307 T[n_,k_]:=k!Binomial[k-1,2]Binomial[n^2+n+1,k-1](n-1); Table[T[n-k+3,k],{n,2,9},{k,3,n+1}]//Flatten %Y A342307 Cf. A000142, A000217, A000794, A001231, A124278, A124287, A293819. %K A342307 nonn,tabl %O A342307 2,1 %A A342307 _Stefano Spezia_, Mar 08 2021