A342313 T(n, k) = (n + k - 1)*(n + k)*binomial(2*n + 1, n - k + 1) with T(0, 0) = T(1, 0) = 1. Triangle read by rows, T(n, k) for 0 <= k <= n.
1, 1, 6, 20, 60, 60, 210, 420, 420, 210, 1512, 2520, 2520, 1512, 504, 9240, 13860, 13860, 9240, 3960, 990, 51480, 72072, 72072, 51480, 25740, 8580, 1716, 270270, 360360, 360360, 270270, 150150, 60060, 16380, 2730, 1361360, 1750320, 1750320, 1361360, 816816, 371280, 123760, 28560, 4080
Offset: 0
Examples
Triangle starts: [0] 1 [1] 1, 6 [2] 20, 60, 60 [3] 210, 420, 420, 210 [4] 1512, 2520, 2520, 1512, 504 [5] 9240, 13860, 13860, 9240, 3960, 990 [6] 51480, 72072, 72072, 51480, 25740, 8580, 1716 [7] 270270, 360360, 360360, 270270, 150150, 60060, 16380, 2730 [8] 1361360, 1750320, 1750320, 1361360, 816816, 371280, 123760, 28560, 4080
Programs
-
Maple
T := (n, k) -> `if`(n=0, 1,`if`(n=1 and k=0, 1, (n + k - 1)*(n + k)*binomial(2*n + 1, n - k + 1))): seq(print(seq(T(n, k), k = 0..n)), n = 0..8);
-
Mathematica
T[0, 0] := 1; T[1, 0] := 1; T[n_, k_] := (n - 1 + k) (n + k) Binomial[2n + 1, n - k + 1]; Table[T[n, k], {n, 0, 8}, {k, 0, n}]
Comments