A342314 T(n, k) = [x^k] 2^n*(Euler(n, x/2) + Euler(n, x)), where Euler(n, x) are the Euler polynomials. Triangle read by rows, T(n, k) for 0 <= k <= n.
2, -2, 3, 0, -6, 5, 4, 0, -15, 9, 0, 24, 0, -36, 17, -32, 0, 100, 0, -85, 33, 0, -288, 0, 360, 0, -198, 65, 544, 0, -1680, 0, 1190, 0, -455, 129, 0, 6528, 0, -8064, 0, 3696, 0, -1032, 257, -15872, 0, 48960, 0, -34272, 0, 10920, 0, -2313, 513, 0, -238080, 0, 293760, 0, -133056, 0, 30960, 0, -5130, 1025
Offset: 0
Examples
Table starts: [0] 2 [1] -2, 3 [2] 0, -6, 5 [3] 4, 0, -15, 9 [4] 0, 24, 0, -36, 17 [5] -32, 0, 100, 0, -85, 33 [6] 0, -288, 0, 360, 0, -198, 65 [7] 544, 0, -1680, 0, 1190, 0, -455, 129 [8] 0, 6528, 0, -8064, 0, 3696, 0, -1032, 257 [9] -15872, 0, 48960, 0, -34272, 0, 10920, 0, -2313, 513
Programs
-
Maple
CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)): E := (n,x) -> 2^n*(euler(n, x/2) + euler(n, x)); seq(CoeffList(E(n, x)), n=0..9);