cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342318 a(n) = numerator(((i^n * PolyLog(1 - n, -i) + (-i)^n * PolyLog(1 - n, i))) / (4^n - 2^n)) if n > 0 and a(0) = 1. Here i denotes the imaginary unit.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 61, 1, 1385, 1, 50521, 691, 2702765, 1, 199360981, 3617, 19391512145, 43867, 2404879675441, 174611, 370371188237525, 77683, 69348874393137901, 236364091, 15514534163557086905, 657931, 4087072509293123892361, 3392780147, 1252259641403629865468285
Offset: 0

Views

Author

Peter Luschny, Mar 22 2021

Keywords

Comments

The defining formula simultaneously represents the numerators of the unsigned divided Bernoulli numbers and the unsigned Euler secant numbers. Some authors consider the divided Bernoulli numbers B(n)/n to be more fundamental than B(n). For instance, B(n)/n is a p-integer for all primes p for which p - 1 does not divide n (see Ireland and Rosen).

Examples

			r(n) = 1, 1/2, 1/12, 1/56, 1/120, 5/992, 1/252, 61/16256, 1/240, 1385/261632, 1/132, ...
		

References

  • K. Ireland and M. Rosen, A classical introduction to modern number theory, vol. 84, Graduate Texts in Mathematics. Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]

Crossrefs

Cf. A342319 (denominator), A001067, A000364, A122045.

Programs

  • Maple
    a := n -> `if`(n <= 2, 1, `if`(n::even, numer(abs(bernoulli(n))/n), abs(euler(n - 1)))); seq(a(n), n = 0..29);
  • Mathematica
    r[s_] := If[s == 0, 1, (I^s PolyLog[1 - s, -I] + (-I)^s PolyLog[1 - s, I]) / (4^s - 2^s)]; Table[r[n], {n, 0, 29}] // Numerator

Formula

a(2*n) = |A001067(n)| for n > 0.
a(2*n+1) = A000364(n) = |A122045(2*n)|.